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Agenda
 Measurement-Based Timing Analysis (MBTA)

 Introduction
 General application process

- Allocation of ipoints
- Trace generation

• Hardware and Software
- Trace collection and 
- Trace processing

 Software trace generation 
 Need and problems in the presence of caches

 Solution Proposal
 Evaluation: Setup and Results
 Conclusions
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Introduction to MBTA
 MBTA 

 Widely used in industry space, automotive, railway, aerospace, …

 Phases:
 Analysis phase 

- Collect measurements to derive a WCET estimate that holds valid 
during system operation

 Operation phase 
- Actual use of the system (under assumption is stays within its 

performance profile)

3 Toulouse, France                             05/07/2016

OperationAnalysis

obs1
obs2

obsN
…

Prediction bound

Must hold during operation



MBTA: General Processs

 Generates a time trace that logs the time at which ipoints are hit
1) Ipoint (●) placement
2) Trace generation: ‘Read time when hitting an ipoint’
3) Trace collection: ‘Get the reading outside the board’
4) Trace processing:  ‘Make sense of the readings’
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1. Ipoint location
 The number and location of the 

ipoints depend on the analysis
 Extremes of the spectrum

 Unit of Analysis (e.g. function)
 Basic block boundary

 In general: 
 Identify small program 

parts/segments (extracted from    
an analysis of the CFG) [6][1]

 Segments chosen to 
- facilitate the derivation of a WCET 

by composing the WCET of each 
segment [19][1] or 

- to reduce the number of ipoints
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3. Trace Collection and 4. Processing
 Instrumented program execu-

tion on the target results in 
a set of timestamps and events

 Collection
 Out-of-band support exists so 

trace collection does not impact 
program execution

 Processing
 Either on-line via specialized 

hardware (can be costly)
 Or off-line (trace files can be high)
 Balance ipoint frequency
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 Their impact assumed null 
 Otherwise, its additive nature will allow to easily factor them in



2.a. Hardware Trace Generation
 Advance debug hardware 

trigger specific actions when 
certain opcodes are executed

 Interfaces exist to program:
 The type of instruction to trace 
 The action to perform when such 

an instruction is hit 
 E.g. Nexus or GRMON for the 

LEON processor family

 In general 
 Debug hardware of that kind is not 

present in all processors used in 
real-time systems 

 In many systems software instru-
mentation support is needed
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2.b. Software Trace Generation
 Instrumentation 

instructions/code (icode) 
are inserted
 E.g icode that reads the time-

base register and output its 
contents to a specific I/O 
address

 Instrumentation instructions: 
move time to a special 
purpose register / memory 
position

 Added by the instrumenter
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2.b. Software Trace Generation: overheads
 Direct: execution of executing instrumentation code

 Core: 
 MPSoC (chip):

 Indirect: change in the layout of program code in memory. 
 Ipoints shift the memory position of following instructions 

address shift  different cache set layout  different program!
 Evidence that the execution-time the instrumented binary (iprog) 

is larger or smaller than those obtained with oprog?

 ࢋࢊ࢕ࢉ࢏∆
൐࢔ࢍ࢏࢒ࢇ࢓ ૙ or ࢋࢊ࢕ࢉ࢏∆

൏࢔ࢍ࢏࢒ࢇ࢓ ૙
- With as low as a single instrumentation instruction
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To leave or not to leave (the icode)
 Removing icode (from the final executable)

 How the execution-time observations taken with the iprog
correlate with the timing behaviour of the oprog

 Functional and timing verification conducted on different software 
- Strong additional argument must be provided for the analysis result to 

hold

 Leaving icode
 Cost and complexity to demonstrate equivalent functionality 

- Certification and qualification practices may simply not accept the 
presence of this instrumenter-added code 

 Likely to worsen memory footprint and average performance 
 Some memory-mapped I/O space – where execution-time 

readings might be kept – may be unnecessarily wasted
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Removing the code: example

 2 set – 2 way cache
 Time iprog < Time oprog
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Removing the code: example

 2 set – 2 way cache
 Time iprog < Time oprog
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Our approach: goals
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 G1:  
 Execution time (version of the program for WCET analysis) > 

execution time (version of the program used during operation)
- Reliability

 G2 (secondary): 
 Reduce overhead of the program used at operation in 

- memory size and
- average execution time



Proposal

 fnprog (operation): 
 Generated from oprog by inserting nop instructions at desired 

instrumentation points

 iprog (analysis): 
 For timing analysis, nops are replaced by actual instr. Operations

Number of nops inserted per ipoint in fnprog so that 
cache alignment of code in fnprog and iprog

stays unchanged 
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 Three versions of the program:
 Original (oprog)
 Functionally neutral (fnprog)
 Instrumented (iprog)



Arguments to be made

 A1: fnprog provides the same functional output as oprog

 A2: execution time (iprog) > execution time (fnprog)
 iprog analysis
 fnprog operation

 Reduce overhead of fnprog
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A1: fnprog = oprog functionally speaking
 ‘fnprog = oprog + nops’

 A nop operation:
1) by definition performs no operation
2) its does not change status flags or any other control registers 
3) generates neither interrupts nor exceptions
4) uses no architectural (programmer accessible) register

- Allows inserting nops anywhere in the code
5) has no input and no output (register) dependences

 From all these properties it follows that fnprog cannot 
change the functional behaviour of oprog
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A2: et(iprog) > et(fnprog)
 Measurement-Based Probabilistic Timing Analysis 

MBPTA[5]:
 ISi = instruction sequence 
 pET(ISi) = its probabilistic execution time (pET) 
 ISi = ISj + {instruction}  pET(ISi) ≥ pET (ISj) 

- For any cut-off probability the exec. time of ISi ≥  exec. time of ISj . 

 This argument can also be made for standard MBTA
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Average performance
 Nops:

 usually take a few cycles to execute 
 The processor may even strip them out from the pipeline before 

they reach the execution stage. 

 Instrumentation instructions:
 Usually need to access off-core (or off-chip) resources such as I/O 

ports or trace buffers, thus incurring longer execution times.
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Setup
 Cycle-accurate simulator
 Cache: 

 4KB L1 instruction- and data-caches
 128 sets and 2 ways each
 Random placement and replacement

 Latencies:
 The access latency to the L1 caches is 1 cycle 
 The access latency to main memory is 28 cycles. 

 Instrumentation overhead:
 For the instrumentation instructions, we assume they have the 

cost of 2 cycles.
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Benchmarks
 EEMBC automotive benchmarks:

 a2time(A2), aifftr(AI), aifirf(AF), aiifft(AT), bitmnp(BI), cacheb(CB), 
canrdr(CN), idctrn(ID), iirflt(II), matrix(MA)

 Railway case-study application
 Part of the European Railway Traffic Mgmt. System (ERTMS)
 On-board unit of the ERTMS, called European Train Control 

System (ETCS).
 We consider 10 different input sets (S0 to S9)
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Results: EEMBC. Code & time overhead
 Code size and exec. time increase (bb instrumentation)

 fnprog and iprog w.r.t oprog

 Execution Time overhead (breakdown per task)

21 Toulouse, France                             05/07/2016



Results: EEMBCs. pWCET results
 Example for a2time

 Results all benchmarks @ cutoff probability of 10e-12
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Results: Railway case study
 2 instrumentation instructions per ipoint
 Code and execution time overhead results

 Tighter on average than those for EEMBC
 Average pWCET estimate increase estimates across Sx

- 8.7% (fnprog)
- 11.9% (iprog)

 Code size increase 
 12% 
 less than the average incurred with the EEMBC benchmarks
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Conclusions
 We presented an approach to 

 mitigate the impact of instrumentation code to prevent cache 
misalignments from occurring between the iprog and oprog

 while incurring low overhead in terms of execution time

 We build upon the use of functionally-neutral operations 
such as nops
 Easy to show that the program version to be deployed that is 

functionally equivalent to the original program
 Has a provable lower execution time than the instrumented 

version

 Future work:
 Evaluate the fnprog approach in a real hardware platform and a 

commercial timing analysis tool
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