
This project and the research leading to these results
has received funding from the European
Community’s Seventh Framework Programme [FP7 /
2007-2013] under grant agreement 611085

www.proxima-project.eu

Mitigating Software Instrumentation Cache Effects
in Measurement-Based Timing Analysis

Enrique Díaz1,2 , Jaume Abella2, Enrico Mezzetti2,
Irune Agirre3, Mikel Azkarate-Askasua3,
Tullio Vardanega4, Francisco J. Cazorla2,5

16th International Workshop on Worst‐Case Execution Time Analysis (WCET 2016)
Toulouse, France, 5th July 2016

4

5

1

2

3

Agenda
 Measurement-Based Timing Analysis (MBTA)

 Introduction
 General application process

- Allocation of ipoints
- Trace generation

• Hardware and Software
- Trace collection and
- Trace processing

 Software trace generation
 Need and problems in the presence of caches

 Solution Proposal
 Evaluation: Setup and Results
 Conclusions

2 Toulouse, France 05/07/2016

Introduction to MBTA
 MBTA

 Widely used in industry space, automotive, railway, aerospace, …

 Phases:
 Analysis phase

- Collect measurements to derive a WCET estimate that holds valid
during system operation

 Operation phase
- Actual use of the system (under assumption is stays within its

performance profile)

3 Toulouse, France 05/07/2016

OperationAnalysis

obs1
obs2

obsN
…

Prediction bound

Must hold during operation

MBTA: General Processs

 Generates a time trace that logs the time at which ipoints are hit
1) Ipoint (●) placement
2) Trace generation: ‘Read time when hitting an ipoint’
3) Trace collection: ‘Get the reading outside the board’
4) Trace processing: ‘Make sense of the readings’

4 Toulouse, France 05/07/2016

MPSoC

.exe


●


●


On-line
processing

HW

Timing
Result

1

42 3
core

1. Ipoint location
 The number and location of the

ipoints depend on the analysis
 Extremes of the spectrum

 Unit of Analysis (e.g. function)
 Basic block boundary

 In general:
 Identify small program

parts/segments (extracted from
an analysis of the CFG) [6][1]

 Segments chosen to
- facilitate the derivation of a WCET

by composing the WCET of each
segment [19][1] or

- to reduce the number of ipoints

5 Toulouse, France 05/07/2016

MPSoC

.exe


●


●



On-line
processing

HW

Timing
Result

1

2 3
core 4

3. Trace Collection and 4. Processing
 Instrumented program execu-

tion on the target results in
a set of timestamps and events

 Collection
 Out-of-band support exists so

trace collection does not impact
program execution

 Processing
 Either on-line via specialized

hardware (can be costly)
 Or off-line (trace files can be high)
 Balance ipoint frequency

6 Toulouse, France 05/07/2016

MPSoC

.exe


●


●


On-line
processing

HW

Timing
Result

1

2 3
core 4

 Their impact assumed null
 Otherwise, its additive nature will allow to easily factor them in

2.a. Hardware Trace Generation
 Advance debug hardware

trigger specific actions when
certain opcodes are executed

 Interfaces exist to program:
 The type of instruction to trace
 The action to perform when such

an instruction is hit
 E.g. Nexus or GRMON for the

LEON processor family

 In general
 Debug hardware of that kind is not

present in all processors used in
real-time systems

 In many systems software instru-
mentation support is needed

7 Toulouse, France 05/07/2016

MPSoC

.exe


●


●


On-line
processing

HW

Timing
Result

1

2 3
core 4

2.b. Software Trace Generation
 Instrumentation

instructions/code (icode)
are inserted
 E.g icode that reads the time-

base register and output its
contents to a specific I/O
address

 Instrumentation instructions:
move time to a special
purpose register / memory
position

 Added by the instrumenter

8 Toulouse, France 05/07/2016

MPSoC

.exe


●


●


On-line
processing

HW

Timing
Result

1

2 3
core 4

2.b. Software Trace Generation: overheads
 Direct: execution of executing instrumentation code

 Core:
 MPSoC (chip):

 Indirect: change in the layout of program code in memory.
 Ipoints shift the memory position of following instructions 

address shift  different cache set layout  different program!
 Evidence that the execution-time the instrumented binary (iprog)

is larger or smaller than those obtained with oprog?

 ࢋࢊ࢕ࢉ࢏∆
൐࢔ࢍ࢏࢒ࢇ࢓ ૙ or ࢋࢊ࢕ࢉ࢏∆

൏࢔ࢍ࢏࢒ࢇ࢓ ૙
- With as low as a single instrumentation instruction

9 Toulouse, France 05/07/2016

To leave or not to leave (the icode)
 Removing icode (from the final executable)

 How the execution-time observations taken with the iprog
correlate with the timing behaviour of the oprog

 Functional and timing verification conducted on different software
- Strong additional argument must be provided for the analysis result to

hold

 Leaving icode
 Cost and complexity to demonstrate equivalent functionality

- Certification and qualification practices may simply not accept the
presence of this instrumenter-added code

 Likely to worsen memory footprint and average performance
 Some memory-mapped I/O space – where execution-time

readings might be kept – may be unnecessarily wasted

10 Toulouse, France 05/07/2016

Removing the code: example

 2 set – 2 way cache
 Time iprog < Time oprog

11 Toulouse, France 05/07/2016

Y

Removing the code: example

 2 set – 2 way cache
 Time iprog < Time oprog

12 Toulouse, France 05/07/2016

Y

Our approach: goals

13 Toulouse, France 05/07/2016

 G1:
 Execution time (version of the program for WCET analysis) >

execution time (version of the program used during operation)
- Reliability

 G2 (secondary):
 Reduce overhead of the program used at operation in

- memory size and
- average execution time

Proposal

 fnprog (operation):
 Generated from oprog by inserting nop instructions at desired

instrumentation points

 iprog (analysis):
 For timing analysis, nops are replaced by actual instr. Operations

Number of nops inserted per ipoint in fnprog so that
cache alignment of code in fnprog and iprog

stays unchanged

14 Toulouse, France 05/07/2016

 Three versions of the program:
 Original (oprog)
 Functionally neutral (fnprog)
 Instrumented (iprog)

Arguments to be made

 A1: fnprog provides the same functional output as oprog

 A2: execution time (iprog) > execution time (fnprog)
 iprog analysis
 fnprog operation

 Reduce overhead of fnprog

15 Toulouse, France 05/07/2016

A1: fnprog = oprog functionally speaking
 ‘fnprog = oprog + nops’

 A nop operation:
1) by definition performs no operation
2) its does not change status flags or any other control registers
3) generates neither interrupts nor exceptions
4) uses no architectural (programmer accessible) register

- Allows inserting nops anywhere in the code
5) has no input and no output (register) dependences

 From all these properties it follows that fnprog cannot
change the functional behaviour of oprog

16 Toulouse, France 05/07/2016

A2: et(iprog) > et(fnprog)
 Measurement-Based Probabilistic Timing Analysis

MBPTA[5]:
 ISi = instruction sequence
 pET(ISi) = its probabilistic execution time (pET)
 ISi = ISj + {instruction}  pET(ISi) ≥ pET (ISj)

- For any cut-off probability the exec. time of ISi ≥ exec. time of ISj .

 This argument can also be made for standard MBTA

17 Toulouse, France 05/07/2016

Average performance
 Nops:

 usually take a few cycles to execute
 The processor may even strip them out from the pipeline before

they reach the execution stage.

 Instrumentation instructions:
 Usually need to access off-core (or off-chip) resources such as I/O

ports or trace buffers, thus incurring longer execution times.

18 Toulouse, France 05/07/2016

Setup
 Cycle-accurate simulator
 Cache:

 4KB L1 instruction- and data-caches
 128 sets and 2 ways each
 Random placement and replacement

 Latencies:
 The access latency to the L1 caches is 1 cycle
 The access latency to main memory is 28 cycles.

 Instrumentation overhead:
 For the instrumentation instructions, we assume they have the

cost of 2 cycles.

19 Toulouse, France 05/07/2016

Benchmarks
 EEMBC automotive benchmarks:

 a2time(A2), aifftr(AI), aifirf(AF), aiifft(AT), bitmnp(BI), cacheb(CB),
canrdr(CN), idctrn(ID), iirflt(II), matrix(MA)

 Railway case-study application
 Part of the European Railway Traffic Mgmt. System (ERTMS)
 On-board unit of the ERTMS, called European Train Control

System (ETCS).
 We consider 10 different input sets (S0 to S9)

20 Toulouse, France 05/07/2016

Results: EEMBC. Code & time overhead
 Code size and exec. time increase (bb instrumentation)

 fnprog and iprog w.r.t oprog

 Execution Time overhead (breakdown per task)

21 Toulouse, France 05/07/2016

Results: EEMBCs. pWCET results
 Example for a2time

 Results all benchmarks @ cutoff probability of 10e-12

22 Toulouse, France 05/07/2016

EVT projection

Results: Railway case study
 2 instrumentation instructions per ipoint
 Code and execution time overhead results

 Tighter on average than those for EEMBC
 Average pWCET estimate increase estimates across Sx

- 8.7% (fnprog)
- 11.9% (iprog)

 Code size increase
 12%
 less than the average incurred with the EEMBC benchmarks

23 Toulouse, France 05/07/2016

Conclusions
 We presented an approach to

 mitigate the impact of instrumentation code to prevent cache
misalignments from occurring between the iprog and oprog

 while incurring low overhead in terms of execution time

 We build upon the use of functionally-neutral operations
such as nops
 Easy to show that the program version to be deployed that is

functionally equivalent to the original program
 Has a provable lower execution time than the instrumented

version

 Future work:
 Evaluate the fnprog approach in a real hardware platform and a

commercial timing analysis tool

24 Toulouse, France 05/07/2016

This project and the research leading to these results
has received funding from the European
Community’s Seventh Framework Programme [FP7 /
2007-2013] under grant agreement 611085

www.proxima-project.eu

Mitigating Software Instrumentation Cache Effects
in Measurement-Based Timing Analysis

Enrique Díaz1,2 , Jaume Abella2, Enrico Mezzetti2,
Irune Agirre3, Mikel Azkarate-Askasua3,
Tullio Vardanega4, Francisco J. Cazorla2,5

16th International Workshop on Worst‐Case Execution Time Analysis (WCET 2016)
Toulouse, France, 5th July 2016

4

5

1

2

3

