PROXIMA

Measurement-Based Timing Analysis
of the AURIX Caches

[

/
1 RO Do 3
Leonidas Kosmidis'? , Davide Compagnin3, David Morales?, ‘ / Pura ed Applicata
Enrico Mezzetti?, Eduardo Quinones?, Jaume Abella?,
Samereamuti Tullio Vardanega?®, Francisco J. Cazorla?4 CSsIC 4

Supercomputing
Center

16th International Workshop on Worst-Case Execution Time Analysis (WCET 2016)
Toulouse, France, 5th July 2016

This project and the research leading to these results
has received funding from the European
Community’s Seventh Framework Programme [FP7 /
2007-2013] under grant agreement 611085

www.proxima-project.eu

Outline

d Motivation and scope

d Software-level Static Software Randomization
d Evaluation on Automotive case study

d Conclusions

2 WCET 2016, Toulouse el PROXIMA |

Motivation

d Measurement-Based Timing Analysis of a
representative automotive application
» Based on system analysis-time measurements
» Derive WCET estimates that hold at system operation

O Representativeness of observations

» Guarantee that measurements taken at analysis time capture

those events impacting execution time
, -

Analysis
®

Operation

time

—
—
—-— e = -

N
Vv

MOET

3 WCET 2016, Toulouse el PROXIMA |

MBTA representativeness

O Timing behavior is the result of a complex interaction of
several relevant factors

» Initial hardware state, input-data dependent execution,
interference from underlying RTOS, memory and cache layout,
etc.

» Extremely difficult to control them all at analysis time
» Equally difficult to design experiments to force “bad” events to
simultaneously occur
O How to guarantee confidence on the results?
» In a (industrially viable) cost-effective way

» Without relying on

- Strong assumptions on the quality and effectiveness
of the test campaign

- Provably unscientific safety margins

4 WCET 2016, Toulouse el PROXIMA |

Focus on cache-induced variability

 Cache effects and induced variability

» Memory mapping - cache layouts -
cache conflicts = execution time

» The effect of conflict misses in particular are typically difficult to
assess and analyze

- Very sensitive to small changes in the layout (recompilation,
integration, etc.)

- Difficult to capture and control in measurements
» We are not after “optimal” memory and cache layouts
- Optimal code and data placement NP-Hard
- We are addressing “critical” scenarios
d Cache randomization and Meas.-based Probabilistic TA
» Allows transparently exposing cache-induced variability

» User can derive the probability of the observed mappings to be
observed at operation

» And the probability of unobserved mappings

5 WCET 2016, Toulouse el PROXIMA |

Focus on automotive reference platform

d AURIX TC27x has been designed to be deterministic
(large scratchpads, optional cache usage, ...)
» Pretty predictable if me make diligent use of the platform

» Industrial practice, however, can be extremely casual!
- Exhibit sources of variability that need to be coped with

d Caveat

» We do not aim to provide an analysis method for the TC27x

» We show instead how sources of variability can be characterized
(e.g. caches, interconnects)

» This may require deploying ‘non standard’ software setups, for
instance to place code/data in caches even when the best practice
could suggest not do it

- We are not after “optimal” setups from an application perspective, but
rather any setup that helps us to expose cache variability

el PROXIMA |

6 WCET 2016, Toulouse

AURIX TC27xT architecture

DMI
TrICOreTM Overlay

DaBteFa{CF)Ihela]sh Progr. | Progr.
Key Flash Flash Flash
Checker Core Checker Core l

DMI oMl DMI
TnCoreTIVI Overlay TnCoreTM Overlay
1.6P 1.6E

SRI Cross Bar

mH ocos

|
m
> I
" | —ECE
= w o
_I_l =
a5 bl S o 2 DS-ACDXx
m
Q
ﬁ!—b ACDx
V)]

EEEEEEEM

WCET 2016, Toulouse

0

il PROXIMA I

AURIX TC27xT architecture

120KB
DSPR

384KB 1MB 1MB
DFlash PFlash | PFlash

16KB |TriCore™| 8KB
DCache

SRI Cross Bar

Checker Core Checker Core

DMI DMI Bridge
TnCoreTIVI Overlay r|CoreTM Overlay
1.6P

.

mH ocos

.

-~
——

Lo 2 DS-ACDX

PLL &
PLL ERAY

System Peripherals BUS

S ema ACDXx

0

WCET 2016, Toulouse

il PROXIMA I

Exploiting memory randomization

d Randomization to better characterize the behavior and
take it into account in WCET analysis

» EXxposes jitter effects caused by cache memories
- For a comprehensive characterization of cache-induced variability

» Makes the system better amenable to MBPTA
- Supports MBPTA requirements and improves representativeness
d How cache variabillity is exposed

» Placing memory objects (functions, stacks, globals) in random
memory locations, across distinct executions

» Program objects are allocated to random sets across runs
d This may happen
» By Hardware (random placement and replacement policies)

» Dynamically: at program load time and during execution
» Statically: at compilation time, before the program runs

9 WCET 2016, Toulouse el PROXIMA B

Static Software Randomization

d For the AURIX domain of application
» No HW support to random policies
» Memory layout of the program cannot be changed at run time
» Randomization can only be static

O Source-code level static SW randomization (SL-SSR)

» Only flavour of SW randomization compatible with the AURIX
- Memory relocations are not allowed at run time

» The location of memory objects is randomized by moving their
declaration in the program source

d SL-SSR in practice

» Source-to-source compiler
» No changes to the system
» Portable across different platforms/tool chains

10 WCET 2016, Toulouse e PROXIMA I

Randomization of code and data

O Randomly reordering functions and global data

» Affects memory layout
» Induces different patterns for conflict misses

| |

: . A : Ways Ways Ways
I un i /\H \%} \ﬁ
: : A A s o B
| FunB | B B

| | (XX)

| |

L o o

I I \

I FunC

|

|

11 WCET 2016, Toulouse el PROXIMA B

Randomization of stack frame

O Size of stack frame depends on size of local variables
» Compiler-enforced alignment paddings
- Variables (and stack) needs to be aligned according to their size
0 SL-SSR uses two complimentary solutions
» Inter-stack randomization (between different stack frames)
- Atrtificially increase the stack frame size, by a random amount
» Intra-stack randomisation (between local variables)
- Reorder local variable declaration order

Global data

| |
1 v1 | Ways Ways Ways
| | <> <> <>
I I v1 N v1v2 \ vl v2 B8
I I v2
| | v3 v3
I 1 _
Fun B locals 1 v2 |
| I —FunBframe
| | y
Fun Alocals - NG
I I FunA frame

- =

12 WCET 2016, Toulouse el PROXIMA B

Evaluation

O Evaluated our approach on a representative setting
» AURIXTC277T Board

» Excerpt from automotive application
» Erika Enterprise OSEK/VDX Compliant RTOS

<http://lwww. http://erika.tuxfamily.org//>

O Generated and collected observations over a large set of
binaries

Seedl

>

ObsN: Observation for Seed/binary N | time

PROXIMA |

13 WCET 2016, Toulouse 05/07/2016

http://www.concerto-project.org/
http://www.concerto-project.org/

The CONCERTO application

ad Cruise Control System R
» Automatically generated from a Simulink model CONCERTO

ARTEMIS JU FP7 Project
<http://www.concerto-project.org/>

The application

SET/SPEED +
includes 4 tasks, Body Computer ECU Engine Control ECU
with precedence SPEED - . .

,p Cruise Control |commengs ~ Cruise Control | | Lamp
relation - Signal Acquisition Monitor Function Command
1. SignalAcq T
2. Monitor RESUME —— Reference| Cruise Control
3. SpeedCtrI Speed Disengagement
4. UpdateStatus

Vehicle Speed
The application is Brake pedal . Controller
. utch peda
assigned to Core 1 status status
Cruise Control
Accelerator Requested Torque
Code and constants pedal status
mapped to PMU Update Status Vehicle
Data mapped to SRAM speed

14 WCET 2016, Toulouse il PROXIMA I

http://www.concerto-project.org/
http://www.concerto-project.org/
http://www.concerto-project.org/

SL-SSR on CONCERTO ELF binary

d ELF widespread binary format
» SL-SSR can be used with any other format

d Main sections: text, .rodata, .data,.bss
» Loaded in memory before program start up

d Specific configuration enforced through RTOS

c()

text d () : Code
msg:;pf]a?rt” —— Flash
pi 3. — | Read-Only data (strings, constants

rodata S “resef\n” y (string)

str “%I| ms\n/

.data ,m ?L — |Initialized variables | —— LMU
ticks 1L
I

bss f . |Uninitialized variables — LMU
time Initialized to 0 at program startup

PROXIMA |

Effectiveness of SL-SSR on CCS

O Effectiveness of SL-SRR T

> Howoftenthefistaddressof » muw N I I g uw
one of the main functionsis 2., 8 &
mapped tO a group Of CaChe ,_.‘2_0,06 N N N N

sets B BB R B

» Converges to homogeneous 0,00 -

distribution (~1/8 = 0.125) R A

O Induced cache-related
variability

> Focus on longest and N

shortest paths B B

» Variability does come from

memory randomization | III

- Almost no variability when O Tttt | pathz | patit | atha | patid | Pathz | pathi | patha

SSR is not in place FUNC1 FUNC2 FUNC3 FUNCA

WCET 2016, Toulouse el PROXIMA B

Capturing cache variability with MBPTA

O User does not need to explicitly control the cache layout

» Analysis-time variability upperbounds that at operation
- Attaching probabilistic guarantees to WCET figures

» Execution time variability achieved (i.i.d tests passed)

Obs. Values ‘\ ™
g et g g g
N MOET =0 >0 > &
= —— MOET+20% = = z2
o o =} =
© © © ©
= o 2 o
S~ 2 r~ S~ S~
ao oo = =)
o © o © o © @
o~ o~ Qo Qo
e c e e
] o © <
e o - -
< [5]]
@ [T @ @
S = o= S = S =
a & 5e I & i@
2 2 2 2
b i ! & b ®
- 1150 1200 1250 1300 1350 1400 - 600 650 700 T 80000 85000 90000 95000 - 520 540 560 580 600 620
Execution Time (cycles) Execution Time (cycles) Execution Time (cycles) Execution Time (cycles)
~
fsel @ fard \ sl
L4 < < 4
zo ze ze -
=] B B =]
© 3 © @
=] o 2 =]
S~ O~ S~ S~
o< o ae o<
o © [o O o ©
o~ o~ Qo o~
e c e e
o o o]
- o b=l -
< [@ <
[T [o = o —
S - 3= 8= S =
i) 5@ o b i)
2 2 B e
® i & » ®
~ 850 900 950 1000 1050 — 500 520 540 560 580 600 360 380 400 420 440 ~ 500 520 540 560 580 600
Execution Time (cycles) Execution Time (cycles) Execution Time (cycles) Execution Time (cycles)

17 WCET 2016, Toulouse el PROXIMA B

Capturing cache variability with MBPTA

O Tightness of results on CCS
» As compared to MOET values
> At pWCET at 10-12 exceedance risk

Cut-off Probability 10-12

Path1 Path2
Function 1 11% 9%
Function 2 6% 10%
Function 3 15% 17%
Function 4 12% 14%

O Very close to observed values
d Always below the typical 20% industrial safety margin

PROXIMA |

Conclusions

d SL-SSR as a means to effectively characterize how cache may
affect the timing behavior of a program

O Benefits on sensitivity to cache behavior
» Programs may be more or less robust to changes in the cache layout

» This may happen even in those architecture that have been
designed with predictability in mind

- As long as the user is allowed to diverge from the intended usage
O Enabled an effective application of MBPTA to automotive
application
» Improved representativeness
» Provided tight results in the analyzed application
- pWCET estimates strictly comparable to observed values
- Largely below the typical 20% industrial safety margin

O Next steps

» Comprehensive evaluation over a larger class of programs
» On different hardware architecture

19 WCET 2016, Toulouse e PROXIMA I

More on SL-SSR

O Leonidas Kosmidis, Roberto Vargas, David Morales,
Eduardo Quinones, Jaume Abella, Francisco J. Cazorla

» “TASA: Toolchain-Agnostic Static Software Randomisation for
Critical Real-Time Systems”

To appear in International Conference On Computer Aided
Design (ICCAD) 2016, November 7-10, 2016, Austin, TX

20 WCET 2016, Toulouse el PROXIMA B

