
Dynamic Branch Resolution based
on Combined Static Analyses

Wei-Tsun SUN, Hugues CASSE

IRIT, Université Paul Sabatier

WCET 2016, Toulouse, France

5th July 2016

This work is supported by the French research foundation (ANR) as part of the
W-SEPT project (ANR-12-INSE-0001)

Content of the talk

• Goal: find the target of “dynamic branches”

• Introduction: CLP and k-set analyses

• Improvement using “program slicing”

• Experiments

• Conclusions

2

What are the “branches”

• We talk about branches as:
• In the assembly manner

• Implement if-else, function calls, switch cases, etc.

• Have target addresses

3

Lets talk about the “static branches” first

• Target address is evaluated at compile-time

• PC calculation: constant value or a constant shift to the
current PC

• if-else and normal function calls
• e.g.1. BL 0x8AE0 ; calling a function

• e.g.2. CMP R2, 3 ; a if-else construct

BEQ 0x8A9C

4

Dynamic branches

• Target addresses are computed at run-time
• i.e. switch-cases, calls on function pointers

• ldrls pc, [pc, r3, lsl #2]
• used by GCC for implementing switch-case with jump tables

• ldrls pc: load a value from memory to PC, when condition code
is LS

• the address is calculated with registers pc and r3

• the value of r3 varies during run-time

5

Overall flow of discovering target address

• To resolve dynamic branches

• We use the combination of analyses:
• Circular-Linear Progression (CLP) + k-set + DynamicBranch

• Program slicing + CLP + k-set + DynamicBranch

• We are going to use short names in the slides:
• CLP: the representation of CLP or the analysis uses CLP

• k-set

• DB: dynamic branching

• PS: program slicing

6

CLP: Circular-Linear Progression

• A way to capture a set of values

• Given a set: {2, 4, 10}
• Pattern: difference of 2, starting from 2

• Create: {2, 4, 6, 8, 10} // 6 and 8 are redundant

• (base, delta, mtimes) = (2, 2, 4)

• Use abstract interpretation (AI)

• Advantage: compact in space (3 integers)

• Disadvantage: introduce imprecision

7

k-set

• A set of size k

• The domain capture the actual values

• i.e. {2, 4, 10}

• More precise

• Faster to converge on AI. Widen to top when current and next sets are
different

• More expensive (scalable ?)

• When analysing the whole program, it definitely needs more memory
then CLP

8

Dynamic branch analysis

• Firstly identify the dynamic
branches

2008c8: mov r2, #1

2008cc: b 2008d4

2008d0: add r2, r2, #1

2008d4: sub r3, r2, #1

2008d8: cmp r3, #9

2008dc: ldrls pc, [pc, r3, lsl #2]

2008e0: b 20095c

2008e4: .word 0x0020090c

2008e8: .word 0x00200910

2008ec: .word 0x0020092c

..

20090c: b 2008d0

BB2

BB1

BB3

9

Dynamic branch analysis

• Firstly identify the dynamic
branches

• Find out the values of relevant
registers and memories

• Get values from k-set

• If not available, get it from
CLP

• Why need k-set ?

2008c8: mov r2, #1

2008cc: b 2008d4

2008d0: add r2, r2, #1

2008d4: sub r3, r2, #1

2008d8: cmp r3, #9

2008dc: ldrls pc, [pc, r3, lsl #2]

2008e0: b 20095c

2008e4: .word 0x0020090c

2008e8: .word 0x00200910

2008ec: .word 0x0020092c

..

20090c: b 2008d0

BB2

BB1

BB3

10

CLP analysis with abstract interpretation

r2 = (1,0,0) // a constant value of 12008c8: mov r2, #1

2008cc: b 2008d4

2008d0: add r2, r2, #1

2008d4: sub r3, r2, #1

2008d8: cmp r3, #9

2008dc: ldrls pc, [pc, r3, lsl #2]

2008e0: b 20095c

2008e4: .word 0x0020090c

2008e8: .word 0x00200910

2008ec: .word 0x0020092c

..

20090c: b 2008d0

BB2

BB1

BB3

11

CLP analysis with abstract interpretation

r2 = (1,0,0) // a constant value of 1

r2 = (1,0,0) r3 = (0,0,0) // introduce r3

2008c8: mov r2, #1

2008cc: b 2008d4

2008d0: add r2, r2, #1

2008d4: sub r3, r2, #1

2008d8: cmp r3, #9

2008dc: ldrls pc, [pc, r3, lsl #2]

2008e0: b 20095c

2008e4: .word 0x0020090c

2008e8: .word 0x00200910

2008ec: .word 0x0020092c

..

20090c: b 2008d0

BB2

BB1

BB3

12

CLP analysis with abstract interpretation

r2 = (1,0,0) // a constant value of 1

r2 = (1,0,0) r3 = (0,0,0) // introduce r3

r2 = (1,0,0) r3 = (0,0,0) pc = (0x2008e4,0,0)

2008c8: mov r2, #1

2008cc: b 2008d4

2008d0: add r2, r2, #1

2008d4: sub r3, r2, #1

2008d8: cmp r3, #9

2008dc: ldrls pc, [pc, r3, lsl #2]

2008e0: b 20095c

2008e4: .word 0x0020090c

2008e8: .word 0x00200910

2008ec: .word 0x0020092c

..

20090c: b 2008d0

BB2

BB1

BB3

13

Now lets come back to DB

r2 = (1,0,0) // a constant value of 1

r2 = (1,0,0) r3 = (0,0,0) // introduce r3

r2 = (1,0,0) r3 = (0,0,0) pc = (0x2008e4,0,0)

=> PC will be load from [0x2008e4],
which is 0x20090c

BB4 and BB5 are created, edges are
created: (BB5, BB2), (BB2, BB4), and (BB4,
BB5)

2008c8: mov r2, #1

2008cc: b 2008d4

2008d0: add r2, r2, #1

2008d4: sub r3, r2, #1

2008d8: cmp r3, #9

2008dc: ldrls pc, [pc, r3, lsl #2]

2008e0: b 20095c

2008e4: .word 0x0020090c

2008e8: .word 0x00200910

2008ec: .word 0x0020092c

..

20090c: b 2008d0BB4

BB2

BB1

BB3

BB5

14

Re-new CLP because CFG changed

2008c8: mov r2, #1

2008cc: b 2008d4

2008d0: add r2, r2, #1

2008d4: sub r3, r2, #1

2008d8: cmp r3, #9

2008dc: ldrls pc, [pc, r3, lsl #2]

2008e0: b 20095c

2008e4: .word 0x0020090c

2008e8: .word 0x00200910

2008ec: .word 0x0020092c

..

20090c: b 2008d0BB4

BB2

BB1

BB3

BB5

• Note that we have a loop

• BB5->BB2->BB4->BB5

• Widening is performed

• r2 and r3 covers a lot of
values

• More targets are explored

15

The problem of CLP

• Note that we have a loop

• BB5->BB2->BB4->BB5

• Widening is performed

• r2 and r3 covers a lot of
values

• More targets are explored

• Because we are in CLP, the value
for address [pc, r3, lsl #2] will be:

• (0x20090c, 4, 8)

• covers 0x20090c, 0x200910,
0x200914, 0x200918,
0x20091c……, 0x20092c ….

• Leads to create non-existent
BBs!

2008c8: mov r2, #1

2008cc: b 2008d4

2008d0: add r2, r2, #1

2008d4: sub r3, r2, #1

2008d8: cmp r3, #9

2008dc: ldrls pc, [pc, r3, lsl #2]

2008e0: b 20095c

2008e4: .word 0x0020090c

2008e8: .word 0x00200910

2008ec: .word 0x0020092c

..

20090c: b 2008d0BB4

BB2

BB1

BB3

BB5

16

Use k-set to keep the values for DB

• The problem of CLP can propagate
and influence a lot more

• We apply a simpler k-set analysis

• With abstract interpretation too

• Coarse grain than CLP

• Now the address [pc, r3, lsl #2]
is: {0x20090c, 0x200910,
0x20092c}

2008c8: mov r2, #1

2008cc: b 2008d4

2008d0: add r2, r2, #1

2008d4: sub r3, r2, #1

2008d8: cmp r3, #9

2008dc: ldrls pc, [pc, r3, lsl #2]

2008e0: b 20095c

2008e4: .word 0x0020090c

2008e8: .word 0x00200910

2008ec: .word 0x0020092c

..

20090c: b 2008d0BB4

BB2

BB1

BB3

BB5

17

Recap: CLP + k-set + DB

CLP

k-set

DB

Reconstruct
CFGs

New
targets
found ?

No

Yes

18

A lot of time are spending on CLP and k-set

• Because DB is simple, most of
the are spent in CLP and k-set.

• As new paths are found, CFGs
grow.

• We only care about finding the
new paths, hence only need to
apply CLP and k-set on
necessary parts => use program
slicing.

CLP

k-set

DB

Reconstruct
CFGs

New
targets
found ?

No

Yes

19

CLP + k-set + DB + PS (program slicing)

• We are interested in the
instructions which influence the
dynamic branching

• Slice away all the other
instructions also empty BBs due
to PS.

CLPsliced

k-setsliced

DB

Reconstruct CFGs
New

targets
found ?

No

Yes

PS

20

Put programming slicing in place

• Many works and many flavours [10][11] ….

• Program slicing decision: useful memory addresses and
registers
• Register – simple, because:

• the # is fixed.

• encoded in the instruction

• Memory – need address analysis
• Needs to go through the whole program again

• Address analysis is provided by CLP

21
[10] M. Weiser. Program slicing. In Proceedings of the 5th international conference on Software engineering, pages 439–449. IEEE
Press, 1981.
[11] C. Sandberg, A. Ermedahl, J. Gustafsson, and B. Lisper. Faster WCET flow analysis by program slicing. In Proceedings of the
2006 ACM SIGPLAN/SIGBED, pages 103–112.ACM, 2006.

What’s really happening

• Because we need CLP as the
address analysis, we are applying
CLP twice in the flow.

PS

k-setsliced

DB

Reconstruct CFGs
New

targets
found ?

No

Yes

CLP

CLPsliced

22

Comparing with the approaches

PS

k-setsliced

DB

Reconstruct
CFGs

New
targets
found ?

No

Yes

CLP

CLPsliced

CLP

k-set

DB

Reconstruct
CFGs

New
targets
found ?

No

Yes

23

Comparing with the approaches

PS

k-setsliced

DB

Reconstruct
CFGs

New
targets
found ?

No

Yes

CLP

CLPsliced

CLP

k-set

DB

Reconstruct
CFGs

New
targets
found ?

No

Yes

Not really gain much
performance all the time,
sometimes even worse.

(oops)

24

Light slicing

• Address analysis is not used

• Consider the whole memory space as a single register

• To be safe, we keep all the instructions which write to the
memory

• Only keep the memory loading instruction when the
target register is of interest

25

CLP + k-set + DB + Light Slicing

CLPsliced

k-setsliced

DB

Reconstruct
CFGs

New
targets
found ?

No

Yes

Light
Slicing

26

We need to have performance gain

• For large applications
• consists of multiple tasks (functions)

• tasks are called in loops

Task 1

Task 2

Task 3

Task 1

Task 3

…….

27

Why not perform analysis on individual tasks?

• Yes, only if the tasks are independent.

• But sometimes they communicate
• Through shared variable (global variable)

• Such variable could also be the function pointer

• Analysis can not make assumption on these variables.

• e.g. the value of v is depending on Task 2, making assumption
on v (e.g. T) will leads to inaccuracy. (The more communication,
the worse)

Task 1 Task 2

Global
Variable

vRead Write

28

Experiments

• On Mälardalen benchmark
• duff, cover, lcdnum

• Realistic application
• From Continental SAS France

• Multi-task engine control software

• 172,985 instructions, 2493 functions, 212,620 lines of C codes

29

Experiments

30

Results

• For more complex scenario, CLP takes more time
• Conventional slicing does not save much time

• Light Slicing helps to obtain more speed-ups
• 2 times+ faster (up to 33 times) in larger application

• All the dynamic branches from Mälardalen are solved
• 92% for the industrial example

• Due to irreducible loops not handled well by the framework
(on-going work)

31

Conclusions

• Combine multiple analyses to achieve dynamic branching
analysis

• Speed-ups from Light Slicing

• Works reasonable well for large and realistic applications

• Incremental computation on analysis
• Since majority part of the program does not change

• Re-use the state computed previously

32

Questions?

• Thank you 

33

