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Introduction
Motivation

modularity network of timed automata
tightness exact cache analysis

I arbitrary policies (not only LRU nor PLRU)

witness initial hardware and software configuration
binary level no high level source code analysis

I compiler independent
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Introduction
Challenge

Limitations
I suffer of the state space explosion

I tailored for embedded microcontrollers

Challenges
I abstracting models of hardware components [4]
I abstracting models of programs [1, 3, 6]

I Cassez et al., 2013
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Program Abstraction using Program Slicing
Overview of Program Slicing

Introduced by Weiser in 1981 [7]
I given a program P ⊆ L× I, ∀(l , i), (l , i ′) ∈ P, i = i ′ with

I L a finite set of labels
I I a finite set of instructions operating over V
I V the set of variables of P

I and a criterion C = (l , v) with
I l ∈ L a label and
I v ⊆ V a subset of variables

I a slice SC is a subset of P
with the same semantics as P wrt. criterion C

8 / 21



Program Abstraction using Program Slicing
Overview of Program Slicing

The slice S(l ,v)
I is a valid program
I that computes values for the subset v

I same as with the original program P
I to the point of execution l

I is obtained by deleting zero or more “lines” from P
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Program Abstraction using Program Slicing
Overview of Program Slicing

00003000 <_start>:
3000: li r1,1 ;r1 <- 1
3004: ori r1,r1,49296 ;ri <- r1 | 49296
3008: bl 3010 ;call main

0000300c <loop>:
300c: b 300c ;branch

00003010 <main>:
3010: li r8,29 ;r8 <- 29
3014: li r10,1 ;r10 <- 1
3018: mtctr r8 ;ctr <- r8
301c: li r9,1 ;r9 <- 1
3020: b 3028 ;branch
3024: mr r9,r3 ;r9 <- r3
3028: add r3,r9,r10 ;r3 <- r9+r10
302c: mr r10,r9 ;r10 <- r9
3030: bdnz 3024 ;ctr--,

;branch if ctr!=0
3034: blr ;return

C = (3030, {ctr})
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Program Abstraction using Program Slicing
Overview of Program Slicing

I dataflow equation-based or graph-based
I fixpoint computation or
I reachability analysis

I slicing binary executables
I a closed issue [5] (although not trivial)
I multiple graph computation from a CFG
I reachability analysis on the final graph
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Program Abstraction using Program Slicing
Abstracting models of programs

An instruction has
I a timing behavior due to its

I class of instruction → number of execution cycles
I data dependencies → pipeline stall
I memory access → cache delay

I and a semantics
I updates the system state

→ We can abstract semantics of some instructions while keeping
the timing behavior of the program

→ Variables used only by abstracted instructions can be removed
from the model thus reducing the overall state space
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Program Abstraction using Program Slicing
Abstracting models of programs

How to abstract a model of program?
(but not its timing behavior)

I abstract model must contain all paths from original model
I i.e. contain all control instructions and their dependencies

I we can use program slicing to find these instructions
I criteria are chosen wrt. the previous constraint as follows:
{(l , v) | ∃i , (l , i) ∈ P

and i is a conditional branching instruction
and v is the subset of variables used by i at l}
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Experimental results
Methodology

I use of Mälardalen WCET benchmarks
I excluding programs containing

I switch-case statements
I floating-point arithmetic
I recursive programs

I multiple compilers and optimization options
I Gcc 5.3.1 (-O0, -O1, -O2, -O3)
I Cosmic C 4.3.7 (-no, default)
I targeting the PowerPC 32 bits instruction set

I sums up to 96 binaries

I use of Trampoline RTOS [2] services
I not documented on our paper
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Experimental results
Results

Source file Gcc Cosmic C
-O0 -O1 -O2 -O3 -no default

adpcm.c 224/1858, 88% 357/966, 63% 421/1094, 62% 348/1775, 80% 398/1282, 69% 338/1064, 68%

Average 78% 63% 62% 65% 66% 63%
67% 64%

→ number of instructions in the slice/total number of instructions, gain in percentage.
→ execution time negligible (always < 1 sec.)
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Experimental results
Results

Source file Gcc Cosmic C
-O0 -O1 -O2 -O3 -no default

adpcm.c 11/17, 35% 28/32, 13% 26/28, 7% 33/36, 8% 22/37, 41% 22/37, 41%

Average 38% 35% 36% 37% 59% 54%
37% 57%

→ number of registers in the slice/total number of registers, gain in percentage.
→ execution time negligible (always < 1 sec.)
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Future work
I improve support of interprocedurality (straightforward)
I extend data dependency analysis to stack frames and

initialized data
I bigger slices but not necessarily bigger state space

I modeling the PowerPC e200z4 core
I no data cache
I instruction cache

I 2 or 4-ways associative
I pseudorandom (global FIFO)

I branch prediction, . . .
I modeling the MPC5643L microcontroller

I two PowerPC e200z4 cores
I XBAR crossbar switch

I multiple masters / multiple slaves
I per slave policy (FP or RR)

I WCET analysis of parallel programs
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Conclusion

I abstract models of program
I for Model Checking-based WCET analysis
I based on program slicing

I a binary executable slicing tool
I instruction set independant
I free sofware (GNU GPL)
I promising experimental results
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Expermimental results
Detailed results

Source file Gcc Cosmic C
-O0 -O1 -O2 -O3 -no default

adpcm.c 1858/224, 88% 966/357, 63% 1094/421, 62% 1775/348, 80% 1282/398, 69% 1064/338, 68%
bs.c 82/27, 67% 38/19, 50% 28/18, 36% 28/18, 36% 54/28, 48% 35/18, 49%
bsort100.c 141/39, 72% 65/24, 63% 58/18, 69% 58/18, 69% 74/34, 54% 66/34, 48%
cnt.c 193/44, 77% 104/38, 63% 87/24, 72% 1124/81, 93% 128/25, 80% 112/23, 79%
compress.c 725/271, 63% 529/214, 60% 530/247, 53% 752/316, 58% 591/253, 57% 501/228, 54%
crc.c 295/44, 85% 162/50, 69% 141/47, 67% 210/98, 53% 186/112, 40% 148/81, 45%
expint.c 187/33, 82% 135/50, 63% 27/5, 81% 27/5, 81% 115/48, 58% 93/40, 57%
fdct.c 662/11, 98% 185/6, 97% 205/6, 97% 692/3, 99% 317/6, 98% 218/6, 97%
fibcall.c 58/12, 79% 32/10, 69% 14/3, 79% 14/3, 79% 29/8, 72% 21/8, 62%
fir.c 137/21, 85% 79/34, 57% 79/33, 58% 79/33, 58% 87/35, 60% 74/30, 59%
janne_complex.c 75/21, 72% 39/21, 46% 40/29, 28% 36/26, 28% 41/20, 51% 30/20, 33%
jfdctint.c 505/29, 94% 195/9, 95% 219/9, 96% 795/6, 99% 255/9, 96% 205/9, 96%
matmult.c 196/36, 82% 120/42, 65% 110/43, 61% 103/38, 63% 135/20, 85% 118/20, 83%
ndes.c 936/162, 83% 474/160, 66% 563/236, 58% 886/522, 41% 653/118, 82% 576/112, 81%
ns.c 115/35, 66% 65/30, 54% 46/27, 41% 181/88, 51% 69/33, 52% 54/29, 46%
prime.c 146/63, 57% 56/38, 32% 48/30, 38% 31/14, 55% 95/46, 52% 82/42, 49%

Average 78% 63% 62% 65% 66% 63%
67% 64%

→ number of instructions in the slice / total number of instructions,
gain in percentage.
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Expermimental results
Detailed results

Source file Gcc Cosmic C
-O0 -O1 -O2 -O3 -no default

adpcm.c 11/17, 35% 28/32, 13% 26/28, 7% 33/36, 8% 22/37, 41% 22/37, 41%
bs.c 7/11, 36% 10/13, 23% 9/10, 10% 9/10, 10% 10/14, 29% 11/13, 15%
bsort100.c 9/12, 25% 13/18, 28% 11/16, 31% 11/16, 31% 13/15, 13% 13/15, 13%
cnt.c 10/15, 33% 13/18, 28% 10/16, 38% 10/18, 44% 10/37, 73% 10/37, 73%
compress.c 15/19, 21% 26/31, 16% 30/33, 9% 32/35, 9% 21/37, 43% 21/37, 43%
crc.c 8/17, 53% 14/23, 39% 10/19, 47% 9/19, 53% 18/37, 51% 18/37, 51%
expint.c 8/13, 38% 16/26, 38% 4/11, 64% 4/11, 63% 14/37, 62% 14/37, 62%
fdct.c 6/13, 54% 4/21, 81% 4/30, 87% 3/33, 91% 3/35, 91% 3/35, 91%
fibcall.c 7/11, 36% 7/12, 42% 3/7, 57% 3/7, 57% 6/12, 50% 6/10, 40%
fir.c 7/16, 56% 13/22, 41% 14/21, 33% 14/21, 33% 15/37, 59% 15/37, 59%
janne_complex.c 7/12, 42% 6/9, 33% 6/8, 25% 7/9, 22% 7/36, 81% 7/8, 13%
jfdctint.c 8/11, 27% 3/15, 80% 4/25, 84% 4/33, 88% 3/35, 91% 3/34, 91%
matmult.c 10/19, 47% 15/20, 25% 15/19, 21% 13/19, 32% 8/37, 78% 8/37, 78%
ndes.c 9/17, 47% 21/27, 22% 23/26, 12% 27/28, 4% 16/37, 57% 15/37, 59%
ns.c 9/14, 36% 13/17, 24% 13/15, 13% 9/12, 25% 14/37, 62% 14/36, 61%
prime.c 10/13, 23% 6/9, 33% 6/9, 33% 6/8, 25% 11/36, 69% 12/36, 67%

Average 38% 35% 36% 37% 59% 54%
37% 57%

→ number of memory locations in the slice / total number of memory locations,
gain in percentage.
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