
BEST: a Binary Executable Slicing Tool
and its use to improve

Model Checking-based WCET Analysis

Armel Mangean1 Jean-Luc Béchennec2 Mikaël Briday3
Sébastien Faucou3

IRCCyN, UMR CNRS 6597
1École Centrale de Nantes, 2CNRS , 3Université de Nantes

July 5, 2016

16th International Workshop on Worst-Case Execution Time Analysis
1 / 21



1. Introduction
Motivation
Challenge

2. Program Abstraction using Program Slicing
Overview of Program Slicing
Abstracting models of programs
Tool implementation

3. Experimental results
Methodology
Results

4. Future work

2 / 21



Introduction

1. Introduction
Motivation
Challenge

2. Program Abstraction using Program Slicing
Overview of Program Slicing
Abstracting models of programs
Tool implementation

3. Experimental results
Methodology
Results

4. Future work

3 / 21



Introduction
Motivation

4 / 21



Introduction
Motivation

modularity network of timed automata
tightness exact cache analysis

I arbitrary policies (not only LRU nor PLRU)

witness initial hardware and software configuration
binary level no high level source code analysis

I compiler independent

5 / 21



Introduction
Challenge

Limitations
I suffer of the state space explosion

I tailored for embedded microcontrollers

Challenges
I abstracting models of hardware components [4]
I abstracting models of programs [1, 3, 6]

I Cassez et al., 2013

6 / 21



Program Abstraction using Program Slicing

1. Introduction
Motivation
Challenge

2. Program Abstraction using Program Slicing
Overview of Program Slicing
Abstracting models of programs
Tool implementation

3. Experimental results
Methodology
Results

4. Future work

7 / 21



Program Abstraction using Program Slicing
Overview of Program Slicing

Introduced by Weiser in 1981 [7]
I given a program P ⊆ L× I, ∀(l , i), (l , i ′) ∈ P, i = i ′ with

I L a finite set of labels
I I a finite set of instructions operating over V
I V the set of variables of P

I and a criterion C = (l , v) with
I l ∈ L a label and
I v ⊆ V a subset of variables

I a slice SC is a subset of P
with the same semantics as P wrt. criterion C

8 / 21



Program Abstraction using Program Slicing
Overview of Program Slicing

The slice S(l ,v)
I is a valid program
I that computes values for the subset v

I same as with the original program P
I to the point of execution l

I is obtained by deleting zero or more “lines” from P

9 / 21



Program Abstraction using Program Slicing
Overview of Program Slicing

00003000 <_start>:
3000: li r1,1 ;r1 <- 1
3004: ori r1,r1,49296 ;ri <- r1 | 49296
3008: bl 3010 ;call main

0000300c <loop>:
300c: b 300c ;branch

00003010 <main>:
3010: li r8,29 ;r8 <- 29
3014: li r10,1 ;r10 <- 1
3018: mtctr r8 ;ctr <- r8
301c: li r9,1 ;r9 <- 1
3020: b 3028 ;branch
3024: mr r9,r3 ;r9 <- r3
3028: add r3,r9,r10 ;r3 <- r9+r10
302c: mr r10,r9 ;r10 <- r9
3030: bdnz 3024 ;ctr--,

;branch if ctr!=0
3034: blr ;return

C = (3030, {ctr})
10 / 21



Program Abstraction using Program Slicing
Overview of Program Slicing

00003000 <_start>:
3000: li r1,1 ;r1 <- 1
3004: ori r1,r1,49296 ;ri <- r1 | 49296
3008: bl 3010 ;call main

0000300c <loop>:
300c: b 300c ;branch

00003010 <main>:
3010: li r8,29 ;r8 <- 29
3014: li r10,1 ;r10 <- 1
3018: mtctr r8 ;ctr <- r8
301c: li r9,1 ;r9 <- 1
3020: b 3028 ;branch
3024: mr r9,r3 ;r9 <- r3
3028: add r3,r9,r10 ;r3 <- r9+r10
302c: mr r10,r9 ;r10 <- r9
3030: bdnz 3024 ;ctr--,

;branch if ctr!=0
3034: blr ;return

C = (3030, {ctr})
10 / 21



Program Abstraction using Program Slicing
Overview of Program Slicing

I dataflow equation-based or graph-based
I fixpoint computation or
I reachability analysis

I slicing binary executables
I a closed issue [5] (although not trivial)
I multiple graph computation from a CFG
I reachability analysis on the final graph

11 / 21



Program Abstraction using Program Slicing
Abstracting models of programs

An instruction has
I a timing behavior due to its

I class of instruction → number of execution cycles
I data dependencies → pipeline stall
I memory access → cache delay

I and a semantics
I updates the system state

→ We can abstract semantics of some instructions while keeping
the timing behavior of the program

→ Variables used only by abstracted instructions can be removed
from the model thus reducing the overall state space

12 / 21



Program Abstraction using Program Slicing
Abstracting models of programs

How to abstract a model of program?
(but not its timing behavior)

I abstract model must contain all paths from original model
I i.e. contain all control instructions and their dependencies

I we can use program slicing to find these instructions
I criteria are chosen wrt. the previous constraint as follows:
{(l , v) | ∃i , (l , i) ∈ P

and i is a conditional branching instruction
and v is the subset of variables used by i at l}

13 / 21



Program Abstraction using Program Slicing
Abstracting models of programs

14 / 21



Program Abstraction using Program Slicing
Abstracting models of programs

14 / 21



Program Abstraction using Program Slicing
Tool implementation

15 / 21



Experimental results

1. Introduction
Motivation
Challenge

2. Program Abstraction using Program Slicing
Overview of Program Slicing
Abstracting models of programs
Tool implementation

3. Experimental results
Methodology
Results

4. Future work

16 / 21



Experimental results
Methodology

I use of Mälardalen WCET benchmarks
I excluding programs containing

I switch-case statements
I floating-point arithmetic
I recursive programs

I multiple compilers and optimization options
I Gcc 5.3.1 (-O0, -O1, -O2, -O3)
I Cosmic C 4.3.7 (-no, default)
I targeting the PowerPC 32 bits instruction set

I sums up to 96 binaries

I use of Trampoline RTOS [2] services
I not documented on our paper

17 / 21



Experimental results
Results

Source file Gcc Cosmic C
-O0 -O1 -O2 -O3 -no default

adpcm.c 224/1858, 88% 357/966, 63% 421/1094, 62% 348/1775, 80% 398/1282, 69% 338/1064, 68%

Average 78% 63% 62% 65% 66% 63%
67% 64%

→ number of instructions in the slice/total number of instructions, gain in percentage.
→ execution time negligible (always < 1 sec.)

18 / 21



Experimental results
Results

Source file Gcc Cosmic C
-O0 -O1 -O2 -O3 -no default

adpcm.c 11/17, 35% 28/32, 13% 26/28, 7% 33/36, 8% 22/37, 41% 22/37, 41%

Average 38% 35% 36% 37% 59% 54%
37% 57%

→ number of registers in the slice/total number of registers, gain in percentage.
→ execution time negligible (always < 1 sec.)

18 / 21



Future work

1. Introduction
Motivation
Challenge

2. Program Abstraction using Program Slicing
Overview of Program Slicing
Abstracting models of programs
Tool implementation

3. Experimental results
Methodology
Results

4. Future work

19 / 21



Future work
I improve support of interprocedurality (straightforward)
I extend data dependency analysis to stack frames and

initialized data
I bigger slices but not necessarily bigger state space

I modeling the PowerPC e200z4 core
I no data cache
I instruction cache

I 2 or 4-ways associative
I pseudorandom (global FIFO)

I branch prediction, . . .
I modeling the MPC5643L microcontroller

I two PowerPC e200z4 cores
I XBAR crossbar switch

I multiple masters / multiple slaves
I per slave policy (FP or RR)

I WCET analysis of parallel programs
20 / 21



Conclusion

I abstract models of program
I for Model Checking-based WCET analysis
I based on program slicing

I a binary executable slicing tool
I instruction set independant
I free sofware (GNU GPL)
I promising experimental results

21 / 21



References

Florian Brandner and Alexander Jordan.
Refinement of worst-case execution time bounds by graph pruning.
Computer Languages, Systems & Structures, 2014.

Jean-Luc Béchennec, Mikaël Briday, Sébastien Faucou, and Yvon Trinquet.
Trampoline An Open Source Implementation of the OSEK/VDX RTOS Specification.
In IEEE International Conference on Emerging Technologies and Factory Automation, 2006.

Franck Cassez and Jean-Luc Béchennec.
Timing Analysis of Binary Programs with UPPAAL.
In International Conference on Application of Concurrency to System Design, 2013.

Franck Cassez and Pablo González de Aledo Marugán.
Timed Automata for Modeling Caches and Pipelines.
In Workshop on Models for Formal Analysis of Real Systems, 2015.

Akos Kiss, Judit Jász, Gábor Lehotai, and Tibor Gyimóthy.
Interprocedural Static Slicing of Binary Executables.
In International Workshop on Source Code Analysis and Manipulation, 2003.

Armel Mangean, Jean-Luc Béchennec, Mikaël Briday, and Sébastien Faucou.
BEST: a Binary Executable Slicing Tool.
In 16th International Workshop on Worst-Case Execution Time Analysis, 2016.

Mark Weiser.
Program Slicing.
In International Conference on Software Engineering, 1981.

1 / 3



Expermimental results
Detailed results

Source file Gcc Cosmic C
-O0 -O1 -O2 -O3 -no default

adpcm.c 1858/224, 88% 966/357, 63% 1094/421, 62% 1775/348, 80% 1282/398, 69% 1064/338, 68%
bs.c 82/27, 67% 38/19, 50% 28/18, 36% 28/18, 36% 54/28, 48% 35/18, 49%
bsort100.c 141/39, 72% 65/24, 63% 58/18, 69% 58/18, 69% 74/34, 54% 66/34, 48%
cnt.c 193/44, 77% 104/38, 63% 87/24, 72% 1124/81, 93% 128/25, 80% 112/23, 79%
compress.c 725/271, 63% 529/214, 60% 530/247, 53% 752/316, 58% 591/253, 57% 501/228, 54%
crc.c 295/44, 85% 162/50, 69% 141/47, 67% 210/98, 53% 186/112, 40% 148/81, 45%
expint.c 187/33, 82% 135/50, 63% 27/5, 81% 27/5, 81% 115/48, 58% 93/40, 57%
fdct.c 662/11, 98% 185/6, 97% 205/6, 97% 692/3, 99% 317/6, 98% 218/6, 97%
fibcall.c 58/12, 79% 32/10, 69% 14/3, 79% 14/3, 79% 29/8, 72% 21/8, 62%
fir.c 137/21, 85% 79/34, 57% 79/33, 58% 79/33, 58% 87/35, 60% 74/30, 59%
janne_complex.c 75/21, 72% 39/21, 46% 40/29, 28% 36/26, 28% 41/20, 51% 30/20, 33%
jfdctint.c 505/29, 94% 195/9, 95% 219/9, 96% 795/6, 99% 255/9, 96% 205/9, 96%
matmult.c 196/36, 82% 120/42, 65% 110/43, 61% 103/38, 63% 135/20, 85% 118/20, 83%
ndes.c 936/162, 83% 474/160, 66% 563/236, 58% 886/522, 41% 653/118, 82% 576/112, 81%
ns.c 115/35, 66% 65/30, 54% 46/27, 41% 181/88, 51% 69/33, 52% 54/29, 46%
prime.c 146/63, 57% 56/38, 32% 48/30, 38% 31/14, 55% 95/46, 52% 82/42, 49%

Average 78% 63% 62% 65% 66% 63%
67% 64%

→ number of instructions in the slice / total number of instructions,
gain in percentage.

2 / 3



Expermimental results
Detailed results

Source file Gcc Cosmic C
-O0 -O1 -O2 -O3 -no default

adpcm.c 11/17, 35% 28/32, 13% 26/28, 7% 33/36, 8% 22/37, 41% 22/37, 41%
bs.c 7/11, 36% 10/13, 23% 9/10, 10% 9/10, 10% 10/14, 29% 11/13, 15%
bsort100.c 9/12, 25% 13/18, 28% 11/16, 31% 11/16, 31% 13/15, 13% 13/15, 13%
cnt.c 10/15, 33% 13/18, 28% 10/16, 38% 10/18, 44% 10/37, 73% 10/37, 73%
compress.c 15/19, 21% 26/31, 16% 30/33, 9% 32/35, 9% 21/37, 43% 21/37, 43%
crc.c 8/17, 53% 14/23, 39% 10/19, 47% 9/19, 53% 18/37, 51% 18/37, 51%
expint.c 8/13, 38% 16/26, 38% 4/11, 64% 4/11, 63% 14/37, 62% 14/37, 62%
fdct.c 6/13, 54% 4/21, 81% 4/30, 87% 3/33, 91% 3/35, 91% 3/35, 91%
fibcall.c 7/11, 36% 7/12, 42% 3/7, 57% 3/7, 57% 6/12, 50% 6/10, 40%
fir.c 7/16, 56% 13/22, 41% 14/21, 33% 14/21, 33% 15/37, 59% 15/37, 59%
janne_complex.c 7/12, 42% 6/9, 33% 6/8, 25% 7/9, 22% 7/36, 81% 7/8, 13%
jfdctint.c 8/11, 27% 3/15, 80% 4/25, 84% 4/33, 88% 3/35, 91% 3/34, 91%
matmult.c 10/19, 47% 15/20, 25% 15/19, 21% 13/19, 32% 8/37, 78% 8/37, 78%
ndes.c 9/17, 47% 21/27, 22% 23/26, 12% 27/28, 4% 16/37, 57% 15/37, 59%
ns.c 9/14, 36% 13/17, 24% 13/15, 13% 9/12, 25% 14/37, 62% 14/36, 61%
prime.c 10/13, 23% 6/9, 33% 6/9, 33% 6/8, 25% 11/36, 69% 12/36, 67%

Average 38% 35% 36% 37% 59% 54%
37% 57%

→ number of memory locations in the slice / total number of memory locations,
gain in percentage.

3 / 3


	Introduction
	Motivation
	Challenge

	Program Abstraction using Program Slicing
	Overview of Program Slicing
	Abstracting models of programs
	Tool implementation

	Experimental results
	Methodology
	Results

	Future work
	References

