
Expressing and Exploiting

Conflicts over Paths

in WCET Analysis

Vincent Mussot, Jordy Ruiz, Pascal Sotin,
Marianne de Michiel, Hugues Cassé

funded by W-SEPT ANR Project

IRIT, Université Paul Sabatier

July 5, 2016

2 / 24 Outline

1 Introduction

2 Notion of conflict
Contextual conflicts
The ordered attribute

3 Integrate conflicts through CFG transformation
Effects of the ordered attribute

4 Integrate conflicts with additional ILP constraints

5 Experiments

3 / 24 Outline

1 Introduction

2 Notion of conflict
Contextual conflicts
The ordered attribute

3 Integrate conflicts through CFG transformation
Effects of the ordered attribute

4 Integrate conflicts with additional ILP constraints

5 Experiments

4 / 24 Introduction

Frequency

Possible

executions

of a program

time

Exact

WCET

Estimated

WCET

Precision

4 / 24 Introduction

Frequency

Possible

executions

of a program

time

Exact

WCET

Estimated

WCET

Precision

A popular method in WCET static analysis

Implicit Path Enumeration Technique (IPET)

1 Work on the Control Flow Graph (CFG) representation of a program

2 Compute low-level timings for every basic block

3 Turn dependencies and timings into an Integer Linear Program (ILP)

4 Solve this ILP to obtain the WCET of the program.

5 / 24 Introduction

Flow facts to improve the WCET

Constraints on execution paths (loop bounds, infeasible paths...)

Contexts (fonction/call, iteration, condition...)

5 / 24 Introduction

Flow facts to improve the WCET

Constraints on execution paths (loop bounds, infeasible paths...)

Contexts (fonction/call, iteration, condition...)

Our contributions

The identification of a specific class of infeasible paths.

The expression in the FFX Format.

Two distinct methods of integration in the WCET analysis

Through CFG transformation (V.Mussot, RTCSA 2015 [8]).
With additional ILP constraints (P.Raymond, EMSOFT 2014 [9]).

Experimental studies with comparison between both methods.

6 / 24 Introduction

What does Flow Fact in XML (FFX) support:

Nested contexts and annotations

<call name="C1" address="0x8004">

<function name="f">

<loop address="0x824a" MAX="10">

<iteration number="7">

...

<condition address="0x90" ...>

<case ... executed="false">

</case>

...

</conditional>

</iteration>

</loop>

</function>

</call>

6 / 24 Introduction

What does Flow Fact in XML (FFX) support:

Nested contexts and annotations

<call name="C1" address="0x8004">

<function name="f">

<loop address="0x824a" MAX="10">

<iteration number="7">

...

<condition address="0x90" ...>

<case ... executed="false">

</case>

...

</conditional>

</iteration>

</loop>

</function>

</call>

Numeric constraints
(e.g.: BB1+BB2≤80)

<block id="BB1"

address="0x8848"/>

<block id="BB2"

address="0x90a4"/>

...

<control-constraint>

<le>

<add>

<count id="BB1"/>

<count id="BB2"/>

</add>

<const int="80"/>

</le>

</control-constraint>

7 / 24 Outline

1 Introduction

2 Notion of conflict
Contextual conflicts
The ordered attribute

3 Integrate conflicts through CFG transformation
Effects of the ordered attribute

4 Integrate conflicts with additional ILP constraints

5 Experiments

8 / 24 Notion of conflict

Example of conflict

if (...)

x = 0; // A

if (x != 0)

y = x; // B

Conflict:

{A,B}.

ILP constraint: nA + nB ≤ 1

8 / 24 Notion of conflict

Example of conflict

if (...)

x = 0; // A

if (x != 0)

y = x; // B

Conflict:

{A,B}.

ILP constraint: nA + nB ≤ 1

Definition

We define a conflict over a list of edges or blocks. Thus, any program
path that contains at least one occurrence of every element of the list is
an infeasible path.

8 / 24 Notion of conflict

Example of conflict

if (...)

x = 0; // A

if (x != 0)

y = x; // B

Conflict:

{A,B}.

ILP constraint: nA + nB ≤ 1

Definition

We define a conflict over a list of edges or blocks. Thus, any program
path that contains at least one occurrence of every element of the list is
an infeasible path.

FFX syntax

<conflict>

<!-- Edge or block identifier 1 -->

<!-- ... -->

<!-- Edge or block identifier N -->

</conflict>

9 / 24 Contextual conflicts

Context of validity

while(...){ //bound=N

if (...)

x = 0; // A

if (x != 0)

y = x; // B

}

Conflicts:

{A,B} in 1st iteration.
...
{A,B} in nth iteration.

ILP constraint: nA + nB ≤ N

The conflict occurs in each iteration of the loop.

9 / 24 Contextual conflicts

Context of validity

while(...){ //bound=N

if (...)

x = 0; // A

if (x != 0)

y = x; // B

}

Conflicts:

{A,B} in 1st iteration.
...
{A,B} in nth iteration.

ILP constraint: nA + nB ≤ N

The conflict occurs in each iteration of the loop.

FFX Syntax

<loop ...>

<iteration number="*">

<conflict>

<edge "A" />

<edge "B" />

</conflict>

</iteration>

</loop>

10 / 24 Contextual conflicts

Example with specific instances of edges

main(){

k = 0;

if (...)

k = 1; // A

foo(k); // C_foo

foo(2);

}

foo(int k){

if (...)

x = 0; // B

if (x != 0

|| k != 1)

y = x; // C

}

The conflict only holds for instances of edges B and C in the call C foo.

10 / 24 Contextual conflicts

Example with specific instances of edges

main(){

k = 0;

if (...)

k = 1; // A

foo(k); // C_foo

foo(2);

}

foo(int k){

if (...)

x = 0; // B

if (x != 0

|| k != 1)

y = x; // C

}

Conflict:

{A,BC foo ,CC foo}

ILP constraint:

nA + nBC foo
+ nCC foo

≤ 2

The conflict only holds for instances of edges B and C in the call C foo.

10 / 24 Contextual conflicts

Example with specific instances of edges

main(){

k = 0;

if (...)

k = 1; // A

foo(k); // C_foo

foo(2);

}

foo(int k){

if (...)

x = 0; // B

if (x != 0

|| k != 1)

y = x; // C

}

Conflict:

{A,BC foo ,CC foo}

ILP constraint:

nA + nBC foo
+ nCC foo

≤ 2

The conflict only holds for instances of edges B and C in the call C foo.

FFX Syntax

<conflict>

<edge "A" />

<call name="C_foo" ...>

<edge "B" />

<edge "C" />

</call>

</conflict>

11 / 24 The ordered attribute

Example of ordered conflict

int k = 0;

while(...){

if (k==0)

... // B

if (...)

k=1; // A

}

Conflict:

{A,B} in that order.

ILP constraint:

???

The conflict only holds for edges A and B in that order. B may appear in
the program path before the first A, not after.

11 / 24 The ordered attribute

Example of ordered conflict

int k = 0;

while(...){

if (k==0)

... // B

if (...)

k=1; // A

}

Conflict:

{A,B} in that order.

ILP constraint:

???

The conflict only holds for edges A and B in that order. B may appear in
the program path before the first A, not after.

FFX syntax

<conflict ordered="yes">

<edge "A" />

<edge "B" />

</conflict>

Note that the ordered conflict is weaker
than the unordered one:

Non-ordered conflict ⇒ ordered conflict

12 / 24 Outline

1 Introduction

2 Notion of conflict
Contextual conflicts
The ordered attribute

3 Integrate conflicts through CFG transformation
Effects of the ordered attribute

4 Integrate conflicts with additional ILP constraints

5 Experiments

13 / 24 Integrate conflicts through CFG transformation

General idea

Turn a Control Flow Graph (CFG) into an automaton.

Express a conflict as an automaton.

Perform a product between both automata.

Rebuild a CFG from the result of the product.

The conflict restriction is now carried by the new CFG.

13 / 24 Integrate conflicts through CFG transformation

General idea

Turn a Control Flow Graph (CFG) into an automaton.

Express a conflict as an automaton.

Perform a product between both automata.

Rebuild a CFG from the result of the product.

The conflict restriction is now carried by the new CFG.

Example

A

x

y*

* B-{ }

A,B-{ }

z

* A-{ }B

Conflict

13 / 24 Integrate conflicts through CFG transformation

General idea

Turn a Control Flow Graph (CFG) into an automaton.

Express a conflict as an automaton.

Perform a product between both automata.

Rebuild a CFG from the result of the product.

The conflict restriction is now carried by the new CFG.

Example

A

x

y*

* B-{ }

A,B-{ }

z

* A-{ }B

Conflict CFG

1

2 3

4

5 6

7

A

B

13 / 24 Integrate conflicts through CFG transformation

General idea

Turn a Control Flow Graph (CFG) into an automaton.

Express a conflict as an automaton.

Perform a product between both automata.

Rebuild a CFG from the result of the product.

The conflict restriction is now carried by the new CFG.

Example

A

x

y*

* B-{ }

A,B-{ }

z

* A-{ }B

Conflict CFG Unfolded CFG

1

2 3

4

5 6

7

1,x

2,y 3,x

4,x

5,x 6,z

7,z7,x

4,y

5,y

7,y

A

B

A

B

14 / 24 Effects of the ordered attribute

Comparison of ordered and unordered automaton

A

Conflict (ordered)Conflict

A

A

A
B

B

B
C

C

C
B

14 / 24 Effects of the ordered attribute

Comparison of ordered and unordered automaton

A

Conflict (ordered)Conflict

A

A

A
B

B

B
C

C

C
B

Observations

The size of the result automaton depends on the unfolding of the
CFG caused by the product.

The size of the conflict automaton explodes in number of states (NS)
with the number of elements (NE) in conflict: NS = 2NE − 1.

The size of a conflict automaton for ordered elements is linear:
NS = NE − 1.

15 / 24 Effects of the ordered attribute

Observations

The size of the result automaton depends on the unfolding of the
CFG caused by the product.

The size of the conflict automaton explodes in number of states (NS)
with the number of elements (NE) in conflict: NS = 2NE − 1.

The size of a conflict automaton for ordered elements is linear:
NS = NE − 1.

15 / 24 Effects of the ordered attribute

Observations

The size of the result automaton depends on the unfolding of the
CFG caused by the product.

The size of the conflict automaton explodes in number of states (NS)
with the number of elements (NE) in conflict: NS = 2NE − 1.

The size of a conflict automaton for ordered elements is linear:
NS = NE − 1.

Product with an ordered conflict

Ax y

* * B-{ }A-{ }

Conflict (ordered)

15 / 24 Effects of the ordered attribute

Observations

The size of the result automaton depends on the unfolding of the
CFG caused by the product.

The size of the conflict automaton explodes in number of states (NS)
with the number of elements (NE) in conflict: NS = 2NE − 1.

The size of a conflict automaton for ordered elements is linear:
NS = NE − 1.

Product with an ordered conflict

Ax y

* * B-{ }A-{ }

Unfolded CFG

1,x

2,y 3,x

4,x

5,x 6,x

7,x

4,y

5,y

7,y

A

B

Conflict (ordered) CFG

1

2 3

4

5 6

7

A

B

16 / 24 Effects of the ordered attribute

Result comparison

1,x

2,y 3,x

4,x

5,x 6,x

7,x

4,y

5,y

7,y

A

B

1,x

2,y 3,x

4,x

5,x 6,z

7,z7,x

4,y

5,y

7,y

A

B

8,x8,y8,x8,y 8,z

From non-ordered conflict From ordered conflict

17 / 24 Outline

1 Introduction

2 Notion of conflict
Contextual conflicts
The ordered attribute

3 Integrate conflicts through CFG transformation
Effects of the ordered attribute

4 Integrate conflicts with additional ILP constraints

5 Experiments

18 / 24 Integrate conflicts with additional ILP constraints

The formula

P.Raymond presented in EMSOFT 2014 [9] a general formula that allows
to generate an ILP constraint from a set S of conflicting edges:

∑

x∈X

pxx ≤ (|X | − 1)|S |+
∑

x∈X

(pxmx − |S |)

where X is a set of edges and S is a set conflicting avatars built upon X

18 / 24 Integrate conflicts with additional ILP constraints

The formula

P.Raymond presented in EMSOFT 2014 [9] a general formula that allows
to generate an ILP constraint from a set S of conflicting edges:

∑

x∈X

pxx ≤ (|X | − 1)|S |+
∑

x∈X

(pxmx − |S |)

where X is a set of edges and S is a set conflicting avatars built upon X

The generation of the set S

We developed an Otawa plug-in that automatically generates sets S from
conflict elements. Then we derive new ILP constraints from the formula
and integrate these constraints in the WCET analysis.

19 / 24 Integrate conflicts with additional ILP constraints

Example with specific instances of edges

while(...){

i=j=0;

if (...)

i=1; // A

if (...)

j=1; // B

}

if (i == 1

&& j ==1)

... // C

19 / 24 Integrate conflicts with additional ILP constraints

Example with specific instances of edges

while(...){

i=j=0;

if (...)

i=1; // A

if (...)

j=1; // B

}

if (i == 1

&& j ==1)

... // C

<conflict>

<loop ...>

<iteration "n">

<edge "A" />

<edge "B" />

</iteration>

</loop>

<edge "C" />

</conflict>

Conflict:

{An,Bn,C}

19 / 24 Integrate conflicts with additional ILP constraints

Example with specific instances of edges

while(...){

i=j=0;

if (...)

i=1; // A

if (...)

j=1; // B

}

if (i == 1

&& j ==1)

... // C

<conflict>

<loop ...>

<iteration "n">

<edge "A" />

<edge "B" />

</iteration>

</loop>

<edge "C" />

</conflict>

Conflict:

{An,Bn,C}

Application of the formula

The set of conflicting edges derived from the conflict is S = {An,Bn,C},
and if we apply the formula, we obtain:

1× A+ 1× B + 1× C ≤ (3− 1)× 1 + 1× n − 1 + 1× n − 1

The newly generated ILP constraint is then A+ B + C ≤ 2n.

20 / 24 Outline

1 Introduction

2 Notion of conflict
Contextual conflicts
The ordered attribute

3 Integrate conflicts through CFG transformation
Effects of the ordered attribute

4 Integrate conflicts with additional ILP constraints

5 Experiments

21 / 24 Experiments

Overview

Detection and expression of conflicts on the Mälardalen benchmark
suite and other benchmarks using the PathFinder tool.

Integration of conflicts in a WCET analysis carried by our academic
tool OTAWA, using both methods presented here.

The same binary files, annotations files (with conflicts) and
architecture models were used in both cases.

21 / 24 Experiments

Overview

Detection and expression of conflicts on the Mälardalen benchmark
suite and other benchmarks using the PathFinder tool.

Integration of conflicts in a WCET analysis carried by our academic
tool OTAWA, using both methods presented here.

The same binary files, annotations files (with conflicts) and
architecture models were used in both cases.

The infeasible path detection tool PathFinder

Analyzes binary programs, looking for semantic conflicts.

Models program paths as conjunctions of predicates on registers and
memory cells.

Deduces infeasible paths from the discovery of unsatisfiable
conjunctions.

Attempts to minimize the sets of edges involved in a conflict.

Supports FFX as an output format.

22 / 24 Experiments

Nb. of conflicts found WCET gain simple arch. WCET gain arm9 + cache

Program Total After minim. Constraints Unfolded Constraints Unfolded

Small Mälardalen benchmarks

adpcm 174 28 0.00 % 0.00 % CE CE

cnt 118 5 0.00 % 0.00 % 0.00 % 0.00 %

cover 3 3 6.95 % 6.95 % 0.01 % 0.25 %

crc 8 8 0.50 % 0.50 % 4.10 % 9.70 %

edn 7 6 0.03 % 0.03 % CE CE

expint 8 5 0.00 % 0.00 % 0.00 % 0.09 %

fibcall 1 1 0.72 % 0.72 % 0.32 % 0.32 %

fir 1 1 0.00 % 0.00 % 3.37 % 7.45 %

select 18 11 0.16 % 0.16 % 0.09 % 0.09 %

sqrt 407 10 0.40 % 0.40 % 0.04 % 0.04 %

Large Mälardalen benchmarks

statemate 1118 71 2.77 % CE∗ 1.00 % CE∗

ud 13 1 1.17 % 1.17 % 1.08 % 1.08 %

nsichneu 13648 7684 0.00 % CE∗ 0.00 % CE∗

minver 10 9 1.40 % 1.40 % CE CE

ludcmp 29 3 0.00 % 0.00 % 0.00 % 0.00 %

lms 2097 141 CE CE CE CE

fft1 830 149 CE CE CE CE

qurt 797 41 CE CE CE CE

Esterel benchmarks

runner 5618 185 9.84 % CE∗ 9.12 % CE∗

abcd 4949 274 3.01 % CE∗ 5.17 % CE∗

23 / 24 Experiments

Nb. of conflicts found WCET gain simple arch. WCET gain arm9 + cache

Program Total After minim. Constraints Unfolded Constraints Unfolded

Small Mälardalen benchmarks

cover 3 3 6.95 % 6.95 % 0.01 % 0.25 %

crc 8 8 0.50 % 0.50 % 4.10 % 9.70 %

expint 8 5 0.00 % 0.00 % 0.00 % 0.09 %

fir 1 1 0.00 % 0.00 % 3.37 % 7.45 %

On the precision improvement of unfolding the CFG

At some points in the WCET analysis, abstract cache states are merged.

→ It injects pessimism.

The CFG is unchanged with the additional constraint method.

→ The merge points remains.

The unfolding method may cause the separation of some paths.

→ Some merge points may disappear.

24 / 24 Conclusion

Conflicts for WCET analysis

We identified conflicts as a specific class of infeasible paths.

They have specific properties:

→ They can replace some numeric constraints.
→ They are often more simple than equivalent numeric constraints.
→ They support external and internal contexts.
→ Their generation from specific infeasible path detection method can be

straightforward.

They can be expressed in an annotation language.

We presented two method for the integration in the WCET analysis.

→ One method through CFG transformation that benefits from the
ordered property to improve its scalability.

→ One method that generates new ILP constraints.

The comparison of the two methods has shown:

→ Significant gain for both methods.
→ Unfolding can be more precise than adding new constraints.
→ Unfolding suffers from scalability issues.

	Introduction
	Notion of conflict
	Contextual conflicts
	The ordered attribute

	Integrate conflicts through CFG transformation
	Effects of the ordered attribute

	Integrate conflicts with additional ILP constraints
	Experiments

