
7/05/2016 

Vincent	Nélis	 Patrick	M.	Yomsi	 Luís	M.	Pinho	



1.  Processes	running	concurrently	on	different	cores	
in	 a	 mul<core	 environment	 interfere	 with	 each	
other	on	the	processor	shared	resources.		

2.  The	 conten<on	 on	 these	 shared	 resources	
considerably	slows	down	the	execu<on	on	every	
core.		



1.  Processes	running	concurrently	on	different	cores	
in	 a	 mul<core	 environment	 interfere	 with	 each	
other	on	the	processor	shared	resources.		

2.  The	 conten<on	 on	 these	 shared	 resources	
considerably	slows	down	the	execu<on	on	every	
core.		

By	how	much	 the	execu4on	may	be	 slowed	down	due	
to	this	interference!?	

This	paper	answers	this	ques<on	with	numbers	
coming	from	experiments.		



!  TACLeBench	 provides	 a	 freely	 available	 and	 comprehensive	
benchmark	suite	for	<ming	analysis.	

!  TACLeBench	 is	 meant	 to	 become	 the	 standard	 benchmarking	
suite	for	<ming	analysis.	

!  The	source	codes	are	100%	self-contained	–	no	dependencies	to	
system-specific	header	files	via	#include	direc<ves	exist.	

!  Almost	 all	 benchmarks	 are	 processor-independent	 and	 can	 be	
compiled	and	evaluated	for	any	kind	of	target	processor.	

Good,	realis<c	benchmark	suites	are	essen<al	for	the	evalua<on	and	
comparison	of	code-level	<ming	analysis	techniques.		



We	focus	on	the	execu<on	in	one	cluster	



1.  Extensive	(monitored)	experiments	

2.  Measure	the	execu<on	<mes	
3.  Take	the	maximum/minimum	observed	

4.  Comments	on	the	variability	(based	on	past	experience)	

"  “Past	experience”	with	mul<cores?	

"  Can	we	improve	that	process?	
"  Can	it	provide	insights	for	the	computa<on	of	the	

WCET	of	the	applica<on?	

Applica4on	
execu4on	4me:	



In	isola4on:	Extract	maximum	
intrinsic	execu<on	<me	(MIET)	

In	conten4on:	Extract	maximum	
extrinsic	execu<on	<me	(MEET)	

Applica<on	



TACLeBench		
benchmark		

suite	
Application 

<code/>	 API	



PLATFORM	SETTINGS	 High-perf	 Low-perf	

Ac<vate	the	D-cache	 Yes	 No	

Invalidate	the	D-cache	before	each	execu<on	window	 No	 -	

Stall	on	access	 No	 Yes	

Ac<vate	the	I-cache	 Yes	 No	

Invalidate	the	I-cache	before	each	execu<on	 No	 -	

Memory	mapping	 Interleaved	 Sequen<al	



Isola4on	High-perf:	
Max									=	523	M	
Varia4on	=	377	k	
																	=	0,07	%	



Isola<on	High-perf:	
Max									=	523	M	
Varia<on	=	377	k	
																	=	0,07	%	

Isola4on	Low-perf:	
Max									=	3.071	M	
Varia4on	=	1	M	
																	=	0,03%	



IG IG IG 

IG IG IG IG 

IG IG IG IG 

IG IG IG IG 

Application 

<code/>	 API	

TACLeBench		
benchmark		

suite	



Isola<on	High-perf:	
Max									=	523	M	
Varia<on	=	377	k	
																	=	0,07	%	

Isola<on	Low-perf:	
Max									=	3.071	M	
Varia<on	=	1	M	
																	=	0,03%	

Conten4on	High-perf	
Max									=	527	M	
Varia4on	=	710	k	
																	=	0,13%	



Isola<on	High-perf:	
Max									=	523	M	
Varia<on	=	377	k	
																	=	0,07	%	

Isola<on	Low-perf:	
Max									=	3.071	M	
Varia<on	=	1	M	
																	=	0,03%	

Conten4on	High-perf	
Max									=	527	M	
Varia4on	=	710	k	
																	=	0,13%	

Isola4on		
mode	

Conten4on		
mode	



Isola<on	High-perf:	
Max									=	523	M	
Varia<on	=	377	k	
																	=	0,07	%	

Isola<on	Low-perf:	
Max									=	3.071	M	
Varia<on	=	1	M	
																	=	0,03%	

Conten<on	High-perf	
Max									=	527	M	
Varia<on	=	710	k	
																	=	0,13%	

Conten4on	Low-perf	
Max									=	27.925	M	
Varia4on	=	12	M	
																	=	0,04%	



Isola<on	High-perf:	
Max									=	523	M	
Varia<on	=	377	k	
																	=	0,07	%	

Isola<on	Low-perf:	
Max									=	3.071	M	
Varia<on	=	1	M	
																	=	0,03%	

Conten<on	High-perf	
Max									=	527	M	
Varia<on	=	710	k	
																	=	0,13%	

Conten4on	Low-perf	
Max									=	27.925	M	
Varia4on	=	12	M	
																	=	0,04%	

Isola4on		
mode	

Conten4on		
mode	



From	 the	 traces	 obtained	 in	 isola<on	 and	 conten<on	
modes,	 we	 showed	 that	 the	 analyzed	 applica<on	 can	
actually	be	very	sensi<ve	to	concurrent	ac<vity.	

1.  This	work	provides	good	insights	on	the	amplitude	
of	the	variability	of	applica<on	execu<on	<mes.	

2.  This	work	allows	us	to	make	recommanda<ons	on	
the	 environment	 set	 up	 to	 favor	 performance	 or	
predictability.	



1.  What	is	the	maximum	slow-down	factor	that	
could	be	experienced	at	run<me?	

2.  What	is	the	rela<on	between	the	slow-down	
factor	and	the	memory	access	paiern	of	the	
analyzed	program?	

3.  How	 to	 totally	 isolate	 processes	 from	 each	
other	 without	 degra<ng	 too	 much	 the	
performance?	

Hmmm!!!	



Thank	you	very	much	for	your	aien<on!	


