
Continuous Non-Intrusive Hybrid WCET
Estimation Using Waypoint Graphs∗

Boris Dreyer1, Christian Hochberger1, Alexander Lange3, Simon
Wegener2, and Alexander Weiss3

1 Fachgebiet Rechnersysteme, Technische Universität Darmstadt
{dreyer,hochberger}@rs.tu-darmstadt.de

2 AbsInt Angewandte Informatik GmbH
wegener@absint.com

3 Accemic GmbH & Co. KG
{alange,aweiss}@accemic.com

Abstract
Traditionally, the Worst-Case Execution Time (WCET) of Embedded Software has been estim-
ated using analytical approaches. This is effective, if good models of the processor/System-
on-Chip (SoC) architecture exist. Unfortunately, modern high performance SoCs often contain
unpredictable and/or undocumented components that influence the timing behaviour. Thus,
analytical results for such processors are unrealistically pessimistic. One possible alternative ap-
proach seems to be hybrid WCET analysis, where measurement data together with an analytical
approach is used to estimate worst-case behaviour. Previously, we demonstrated how continuous
evaluation of basic block trace data can be used to produce detailed statistics of basic blocks
in embedded software. In the meantime it has become clear that the trace data provided by
modern SoCs delivers a different type of information. In this contribution, we show that even
under realistic conditions, a meaningful analysis can be conducted with the trace data.

1998 ACM Subject Classification C.4 Performance of Systems, D.2.4 Software/Program Veri-
fication

Keywords and phrases Hybrid Worst-Case Execution Time (WCET) Estimation for Multicore
Processors, Real-time Systems

Digital Object Identifier 10.4230/OASIcs.WCET.2016.<first-page-number>

1 Introduction

In previous work [8], we showed a novel approach for hybrid execution time estimation. Its
main features are the precision that we achieve by taking typical cache behaviour into account,
the continuous nature of the FPGA-based online aggregation and the non-intrusiveness, as
we exploit the hardware tracing mechanisms of modern state-of-the art SoCs.

One of the underlying techniques used to implement this approach is the notion of the
control flow graph. A control flow graph consists of basic blocks – sequences of instructions,
where each instruction except the first and the last has exactly one predecessor and one
successor – and edges that describe the flow of control in a program, i.e. conditionals, routine
calls, loops etc. However, the embedded trace unit (ETU) of modern ARM processors (like
the Xilinx Zynq featuring an ARM Cortex-A9) is not fully compatible with this model.

∗ This work was funded within the project CONIRAS by the German Federal Ministry for Education and
Research with the funding ID 01IS13029. The responsibility for the content remains with the authors.

© Boris Dreyer, Christian Hochberger, Alexander Lange, Simon Wegener and Alexander Weiss;
licensed under Creative Commons License CC-BY

16th International Workshop on Worst-Case Execution Time Analysis (WCET 2016).
Editor: Martin Schoeberl; pp. 1–10

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.WCET.2016.<first-page-number>
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/


2 Continuous Non-Intrusive Hybrid WCET Estimation Using Waypoint Graphs

The mental model of the ETU is as follows: For each non-linear control flow, for example
interrupts and hardware exceptions, but also normal branches and calls, a so-called waypoint
event is emited. These events carry the address where the control flow change happened
and the target of the change. Some instructions (the waypoint instructions) always generate
a waypoint event [2]. Amongst others, all instructions that possibly modify the program
counter are waypoint instructions. This is enough to fully reconstruct the control flow, but
less fine grained than the control flow graph.

Start	main

main.L1

Start	main.L1

arm::0x104

arm::0x104 cmp	r1,	#0xb
arm::0x108 blt	0xfc	<??main_1>

End	main.L1arm::0xfc

arm::0xfc adds	r0,	r1,	r0
arm::0x100 adds	r1,	r1,	#1

arm::0x10c

arm::0x10c bx	lr

arm::0xf0

arm::0xf0 mov	r0,	#0
arm::0xf4 mov	r1,	#1
arm::0xf8 b			0x104	<??main_0>

End	main

Start	main

Waypoint

arm::0xf8 b	0x104

Direction	arm::0x104,	ID	2

main.L1

Start	main.L1

Waypoint

arm::0x108 blt	0xfc

Direction	arm::0x10c,	ID	4

End	main.L1

Direction	arm::0xfc,	ID	3

Waypoint

arm::0x10c bx	lr

Direction	end,	ID	5

Direction	arm::0xf0,	ID	1

End	main

Figure 1 Control flow graph of a small program containing a simple loop (left) and its associated
waypoint graph (right).

Consider Figure 1. It contains a control flow graph on the left and its associated waypoint
graph on the right. On the left, inside the loop main.L1, two basic blocks are shown. The
second one, starting at address 0xfc, does not contain any change-of-flow instruction, but
performs always a fall-through to the basic block at 0x104. Consequently, no waypoint
instruction exists that represents this second basic block, but only one for the first basic
block (the instruction blt at address 0x108). Each outgoing edge of a waypoint instruction
is annotated with the target address given by its waypoint event. Hence we can distinguish
the two possible paths through the loop.

To cope with the changed setting, we had to rework large parts of our approach presented
in [8]. We spend higher effort in the preprocessing phase, but we are rewarded by a simplified
implementation of the runtime phase. This paper presents the changes that we made to our
former approach in order to achieve precise continuous non-intrusive measurement-based
execution time estimation for waypoint graphs.

The paper is structured as follows: First, in Section 2, we discuss related work. We
continue with a recapitulation of our method’s workflow in Section 3. Then, in Section 4,



B. Dreyer, C. Hochberger, A. Lange, S. Wegener and A. Weiss 3

we discuss different hardware tracing units, the quality of the trace they produce and their
usefulness for our approach. Afterwards, in Section 5, we highlight the changes between
our revised approach and our original approach. Moreover, we introduce a new tool to
determine in which context an instruction sequence is executed, the so-called loop automata.
We continue with an evaluation of our approach on the TACLeBench benchmark suite [9] in
Section 6. Finally, we conclude our work and discuss future work in Section 7.

2 Related Work

The problem of computing tight bounds of the execution time of a program is an active
field of research, with many methods and tools using both static and dynamic analysis
approaches [14]. Static analysis methods compute safe upper bounds of the execution time
from a mathematical model of the target architecture. Dynamic analysis methods, on the
other hand, derive the execution time from measurements performed on real hardware.
Hybrid methods, like our approach, combine execution time information extracted from
measurements with statically computable information like control flow graphs to improve
safety, precision and/or coverage of the result. Probabilistical methods, finally, try to compute
statistical models from measurements to compute upper bounds of the execution time.

The most basic version of measurement-based execution time analysis, namely end-to-end
measurements, is still in frequent industrial use [12], but its problems are manifold. Not
only it is unable to produce safe estimates, as in general not all possible scenarios can be
measured, but the results are hard to interpret, too, as they are not related to particular
parts of the code but only to the whole program.

To overcome this, more structured approaches have been proposed, e.g. by Betts et
al. in [6], which combine the measured execution times of small code snippets to form an
overall execution time estimate. Their use of software instrumentation leads to the probe
effect, i.e. the timing behaviour of the program under observation changes due to the used
observation technique. Moreover, their method does not account for typical cache behaviour
and may be overly conservative. In a more recent publication [7], they use the non-intrusive
tracing mechanisms of state-of-the-art debugging hardware. The main obstacle of their
method is the limited size of trace buffers and/or the huge amount of trace data. According
to their estimates, around half a terabyte of data would be generated in an hour of testing.

Stattelmann et al. [13] propose the use of context information in order to account for cache
effects. Their work shows that the inclusion of context information leads to more precise
execution time results. However, their approach is limited to processors with sophisticated
trace trigger mechanisms and performs again an offline analysis of the collected data.

Most measurement-based methods suffer from one or the other problem mentioned above.
Our approach, in contrast, circumvents these drawbacks:

We measure the timing of short instruction sequences. This fine grained approach allows
to see where time is spent.
We use non-intrusive hardware tracing mechanisms of state-of-the-art processors to
produce timestamps. The probe effect is avoided.
We process the trace events online. There is no need to store huge amounts of trace data.
We process the trace events continuously. The aggregation can literally run for weeks.
The possibilities to catch rare circumstances are increased.
We incorporate the execution context of instructions and account for typical cache
behaviour. The results are thus much more precise.
The use of an FPGA allows us to adapt our method to different hardware tracing units.

WCET’16



4 Continuous Non-Intrusive Hybrid WCET Estimation Using Waypoint Graphs

SoC
(Xilinx Zynq)

Em
b

ed
de

d 
Tr

ac
e 

U
n

it

Post-Processing

P
re

-P
ro

ce
ss

in
g

Executable

Control Flow 
Reconstruction

CFG

Measurement 
Configurator

Config

FPGA (Xilinx Virtex-7)

Continuous 
Aggregation

Trace 
Extraction

In
st

ru
ct

io
n

 
R

ec
o

n
st

ru
ct

io
n

Lo
o

p 
A

u
to

m
at

a 
C

lu
st

er

Tr
ac

e
 D

at
a

P
re

-P
ro

ce
ss

in
g

St
at

is
ti

cs
 

M
od

u
le

C
PU

 
C

o
rt

e
x 

A
9

, 6
6

7
 M

H
z

Edge Statistics

Path Analysis

ILP

ILP solver

WCET
Trace Data

Traceable System States

32 kB L1 I-Cache

512 kB L2 Cache

1GB DDR3

Edge Events
(Edge ID + Cycles)

WPG

FI
F

O

Figure 2 Workflow. Our approach is splitted into three phases: an offline pre-processing phase,
the continuous online aggregation phase and an offline post-processing phase.

3 Workflow

Our method works on the object code level and is split into three phases: an offline pre-
processing phase, the continuous online aggregation phase and an offline post-processing
phase. The workflow of our method is shown in Figure 2. The control flow reconstruction
and the ILP-based path analysis are re-used from the aiT tool chain [1].

We assume that a set of tasks is distributed over the cores of a multicore processor
such that each task runs on exactly one core. Each task uses its own trace extraction and
continuous aggregation modules. Hence it suffices to describe the workflow for a single core.

Control Flow Reconstruction and Waypoint Graph Computation First, the binary reader
disassembles a fully linked binary executable into its individual instructions. Architecture
specific patterns decide whether an instruction is a call, branch, return or just an ordinary
instruction. This knowledge is used to form the basic blocks of the control flow graph (CFG).

Then, the control flow between the basic blocks is reconstructed. In most cases, this is done
completely automatically. However, if a target of a call or branch cannot be statically resolved,
then the user needs to write some annotations to guide the control flow reconstruction.

After finishing the reconstruction of the CFG, the waypoint graph (WPG) is computed.
To do so, a pattern matcher checks for each instruction whether it is a waypoint instruction.
Afterwards, the edges of the WPG are computed. For each waypoint instruction found, the
algorithm follows the edges in the CFG to find reachable waypoints. This gives the direction
of a waypoint edge and its target.

Configuration of the Continuous Online Aggregation Then, the WPG is used to create a
configuration for the trace extraction module as well as for the continuous online aggregation
module on the FPGA. This configuration assigns an unique ID to each edge in the waypoint
graph. Moreover, it instantiates the lookup tables in the loop automata cluster (see Section 5
for a detailed description).

Trace Extraction During the program’s execution, the ETU continuously emits raw trace
data. This stream of data is fed into the trace extraction module. There, the raw data is
decoded and compiled into an event stream. An event is generated for each traversal of a
waypoint and consists of an ID and a timestamp. The special ID 0 is used if the waypoint



B. Dreyer, C. Hochberger, A. Lange, S. Wegener and A. Weiss 5

does not belong to the WPG computed during the pre-processing phase. This happens for
example in case of an interrupt. Otherwise, the ID from the module’s configuration is used.
The resulting event stream is then fed into the continuous aggregation module.

Continuous Context-Sensitive Aggregation To achieve precise results, it is important that
the aggregation module accounts for cache effects. Typically, the first iteration of a loop
needs more time than the subsequent iterations because the instruction cache is not yet
filled. Simply aggregating all loop iterations in the same record would thus most probably
overestimate the time spend in all iterations but the first. For well-formed loops, we thus
compute two statistical records for each edge belonging to a loop, one that aggregates the
execution times in the first iteration and another that aggregates the execution times in all
subsequent iterations, i.e. we take the execution context into account. This resembles some
kind of virtual loop unrolling. If a basic block is part of nested loops, we only discriminate
the iterations of the innermost loop, due to limited storage for the statistical records.

The ID of an event is used as input for the loop automata cluster. Each automaton in
the cluster performs one step. Then, their state is used to decide whether a loop is executed
and if it is the first iteration of the loop or already a later one.

The timestamp of an event is used to measure the execution time of the code snippet
represented by the waypoint edge. Various statistics (minimal observed execution time,
maximal observed execution time, count of executions) are updated each time an edge event
is processed. The ID together with the execution context computed in the loop automata
cluster form the index in the memory of statistical records.

Post-Processing and Path Analysis After the program has finished (or the test engineer
has collected enough data), the post-processing phase is started by downloading the statistics
from the FPGA’s memory. Subsequently, the WPG together with the edge timing statistics
are used to construct a maximisation problem encoded as an integer linear program (ILP).
Solving this ILP gives a path with maximal execution time (and consequently, an estimate
of the worst-case execution time).

Finally, the computed path is visualised for the user. An edge is marked infeasible if
no statistics have been created for it. This information can be used to detect dead code.
Moreover, the WCET contribution of the individual parts of the program is visualised. That
way, the test engineer can see where in the program the hot spots are. This is particularly
useful if the program is the target of performance optimisations.

4 Embedded Trace Units

The measurability of the execution time of instruction or basic blocks is a precondition for
the proposed hybrid WCET measurement approach.

The traditional software instrumentation methodology with its obvious change of the
systems behaviour (application blow up, execution slow down) is inappropriate for this
measurement. In lieu thereof ETUs are implemented in the SoC. An ETU observes the SoC
internal states, compresses and outputs this information via a dedicated high-bandwidth
trace port. There are several ETU implementations available, which differ in the type
of trace information and the compression efficiency (see Table 1). The most important
ETU implementations are Nexus 5001™ [11] (for instance within the NXP Qorriva/QorIQ
devices [10]) and the ARM CoreSight™ architecture [4].

WCET’16



6 Continuous Non-Intrusive Hybrid WCET Estimation Using Waypoint Graphs

ETU type Nexus 5001™ [11] ARM CoreSight™
Implementation Traditional

branch messages
Branch
history messages

ETMv3 [3] ETMv4 [5] PFT [2]

Program Flow
Observation
Level

Branch Branch Instruction Branch Branch

Cycle count Yes No No Yes Yes Yes
Applicable for
hybrid WCET
measurement

Yes No No Yes Yes Yes

Table 1 ETU overview and its applicability for hybrid WCET measurement

The processor can possibly generate more trace data than the SoC’s trace port can output
at a given time. Therefore, the ETU includes a FIFO to buffer trace messages. The trace
processing unit has to be able to handle the overflow of the ETU FIFO if a large volume of
trace messages is generated (e.g. at narrow loops with high branch frequency).

5 Revised Method

This section presents a revised version of our approach for hybrid measurement-based timing
analysis [8]. The original version of this approach was based on basic blocks, therefore the
trace extraction unit had to emit basic block events. These events were also used to determine
the execution context of the measured basic blocks, and to compute statistics over these
blocks. By considering the execution context of the basic blocks, two statistics per basic
block were computed: one containing the execution times of the basic block during the first
iteration of its innermost surrounding loop (cold cache) and one containing all subsequent
iterations (hot cache).

It turned out that there are processor architectures on the market for which we cannot
reconstruct the basic blocks because not enough information is available in the stream of
trace data. So we had to revise our architecture to use waypoint edge events instead of basic
block events. The module that determined the context of executed instructions based on
basic block events had to be replaced by new a one that uses waypoint edge events. This
new module is called loop automata cluster and the central point of our revised work. It
determines the context of each instruction based on a set of finite state machines and will be
further described in this section. Only a few changes had to be made to the original statistics
module to be compatible with the new loop automata cluster.

Loop Automata Cluster The loop automata cluster has the purpose to determine the
context of each executed instruction, so that the statistics module can compute context-
sensitive statistics. We define the context of an instruction by the context of its innermost
surrounding loop. The context of each loop of an application can be determined by interpreting
the waypoint edge event stream emitted by the trace extraction module [2]. For this
interpretation WPG information is required because the event stream contains only the
waypoint ID and the cycle count.

We model each loop of an application by two finite state machines (FSM) and four
comparator trees. Figure 3 illustrates one set of four comparator trees that are used to
translate the waypoint edge IDs of the event stream into loop specific context change events,
namely enter (the loop has been entered), reenter (the loop has been iterated), exit (the



B. Dreyer, C. Hochberger, A. Lange, S. Wegener and A. Weiss 7

ID == 2 

ID ==
⋁

ID ==

ID ==
⋁

⋁ enter

ID == 3 

ID ==
⋁

ID ==

ID ==
⋁

⋁ reenter

ID == 4 

ID ==
⋁

ID ==

ID ==
⋁

⋁ exit

exceptionID == 0 

Figure 3 The instantiated
comparator trees for the loop in
Figure 1.

Unknown First

FurtherNone

enter

re
en

te
r

ex
it

exit

ree
nte

r

en
te
r

ex
it

Figure 4 Finite state ma-
chine that reflects the different
loop contexts.

Unknown In

Out

enter

re
en

te
r

ex
it

en
te
r

ex
it

Counter

Figure 5 Finite state ma-
chine that counts the iterations
of a loop.

loop has been exited), and exception (knowledge about the loop’s context have been lost).
The compare values of these loop specific comparator tree sets can be extracted from the
WPG of the application.

Besides the comparator trees we use FSMs to store loop information. The first FSM gives
information about the context of the loop and is illustrated in Figure 4. Its states reflect
the different contexts of a loop, namely None (the loop is not executed), First (the loop
is in its first iteration), Further (the loop is at least in its second iteration), and Unknown
(no knowledge whether the loop is executed or not). If the FSM is in state First, the
statistics for the first iteration of the waypoint are updated. If the FSM is in state Further,
the statistics for all subsequent iterations are updated. If waypoint edge events have been
lost during the trace extraction, e.g. because trace buffers within the processor have been
overflowed, it can not be determined whether the loop is executed in the first or further
iterations or not. In this case the FSM is in state Unknown and both statistics of a waypoint
are updated to further maximize its WCET.

During program execution, several loops can be in their first or further iteration, due to
nested loops. In this case, the context of the innermost loop determines the context of the
waypoint edge events. For this, we use a stack to track the innermost loop during runtime.

The second FSM gives information about the iteration count of the loop and is depicted
in Figure 5. It consists of tree states, namely Out (the loop is not being executed), In (the
loop is being executed), and Unknown (it is not known if the loop is being executed or not).
If the loop is not executed, the FSM is in state Out and the iteration counter is zero. Once
the loop is executed the state changes to In and the counter is set to one because we count
the executions of the loop header. Each time the FSM is in state In and a reenter event
occurs the counter is incremented by one. As soon as the machine changes it state from
In to Out the counter value is considered as performed loop iterations and the loop bounds
statistics for this loop are updated.

It is possible that a trace analysis starts after the program execution has been stated.
Consequently, there is a lack of loop context information at the beginning of the analysis.
Therefore the initial state of each FSM is Unknown.

WCET’16



8 Continuous Non-Intrusive Hybrid WCET Estimation Using Waypoint Graphs

6 Evaluation

We evaluated our approach on a set of benchmarks. However, parts of the prototypical
implementation have been simulated in software due to the changes we had to implement
compared to our initial approach. We plan to have a full hardware implementation at the
time of the workshop.

Setting The target SoC for our prototype is a Xilinx Zynq featuring a dual-core ARM
Cortex-A9 running at 667 MHz. The memory subsystem of this SoC constists of 32 kilobytes
of L1 instruction cache, 512 kilobytes of L2 cache and 1 gigabyte of DDR main memory.
We deactivated the L2 cache and the dynamic branch prediction in order to focus on
L1 instruction cache effects. We used the TACLeBench benchmark collection [9] for the
evaluation. We started with the evaluation before version 2.0 of the benchmark collection
was finalized and had some problems with some of the tests. In particular, the benchmark
sha could not be compiled with the C++ compiler provided with the Xilinx SDK 2014.4 that
we used. We ran the triplet of a benchmark’s init, main and return functions ten times
in a row, except for powerwindow, which has been run only once as it contains a sligthly
different structure than the other benchmarks. Unfortunately, this setting led to runtime
errors in some of the benchmarks such that we could not use them for the evaluation.

Results The results of our evaluation are shown in table 2. We performed two runs of
measurements, one with the L1 instruction cache enabled and one with disabled L1 instruction
cache.

For the measurements performed with activated L1 instruction cache, we give the maximal
observed end-to-end execution times of executing the benchmark’s main function, the result
of our analysis when the execution context is ignored, the result of our context-sensitive
analysis, the improvement ratio between the later two and the overestimation of the context-
sensitive analysis compared to the end-to-end measurements. A smaller ratio denotes a
better improvement of the estimated execution time bound when the loop iteration has been
taken into account as typical cache behaviour is exploited.

For the measurements performed with disabled L1 instruction cache, we give the max-
imal observed end-to-end execution time and the result of the context-insensitive analysis.
Moreover, we compared them with with the results when the L1 instruction cache is enabled
to see what impact the L1 cache has one the execution time of the benchmarks.

On average, an improvement ratio of 0.94 has been reached, i.e. the estimated execution
time bound was decreased by 6% when the execution context has been taken into accout.
Some benchmarks, like md5 and prime showed much better bound reductions with 33% and
49%, respectively. Other showed almost no improvement at all. On closer inspection, it
turned out that those benchmarks had little variance in the observed waypoint execution
times. We suspect that the prefetching mechanism of the Cortex-A9 pipeline is able to
prevent long delays during instruction fetch.

Most benchmarks showed reasonable overestimation when comparing the end-to-end
execution times and the estimated context-sensitive bounds, with a median of 1.90. Exceptions
are bitonic, fft and quicksort which contain data dependant loops and recursions. Since
we used the maximal observed loop bounds as bounds for our ILP, we get huge overestimations.

For two benchmarks, we where not able to perform a full evaluation. One is md5, where
we encountered a trace buffer overflow. We could thus not measure any end-to-end time,
but our approach worked nonetheless, as we observed enough small snippets to estimate an



B. Dreyer, C. Hochberger, A. Lange, S. Wegener and A. Weiss 9

L1 instruction cache activated L1 instrcution cache deactivated
program end-to-end context-insensitive context-sensitive improvement overestimation end-to-end context-insensitive end-to-end ratio bound ratio
adpcm_dec 2099113 4292573 3585664 0,84 1,71 8269445 30367476 3,94 7,07
adpcm_enc 52417 90387 88641 0,98 1,69 82542 154810 1,57 1,71
basicmath 19497183 44583249 44138972 0,99 2,26 40107369 168812436 2,06 3,79
binarysearch 1726 2499 2292 0,92 1,33 3237 5739 1,88 2,30
bitcount 149719 466712 463553 0,99 3,10 273131 1599420 1,82 3,43
bitonic 162046 33378706 33361129 1,00 205,87 333355 60556151 2,06 1,81
bsort 2912025 9847181 9829328 1,00 3,38 4470758 15486611 1,54 1,57
complex_updates 7948 11066 10997 0,99 1,38 10735 14086 1,35 1,27
countnegative 98709 256863 255445 0,99 2,59 150774 420206 1,53 1,64
crc 23728 42511 41035 0,97 1,73 1010312 4941180 42,58 116,23
fac 4567 19492 19141 0,98 4,19 10892 54133 2,38 2,78
fft 4967772 2060545070 2060447457 1,00 414,76 7638856 2386497145 1,54 1,16
filterbank 52757627 56175367 56000579 1,00 1,06 130534265 214822229 2,47 3,82
fir2dim 45900 87390 81835 0,94 1,78 91914 174316 2,00 1,99
iir 1779 2401 2227 0,93 1,25 2431 3286 1,37 1,37
insertsort 29397 68977 68291 0,99 2,32 40268 83702 1,37 1,21
jfdctint 37358 39795 39657 1,00 1,06 44769 46902 1,20 1,18
lift 10329419 17278328 13925216 0,81 1,35 20087468 38399195 1,94 2,22
lms 5209670 12704581 12478923 0,98 2,40 8672208 25151604 1,66 1,98
ludcmp 38448 154678 146569 0,95 3,81 65963 256881 1,72 1,66
matrix1 136086 351749 350891 1,00 2,58 275566 537144 2,02 1,53
md5a 154573496 615340440 410888084 0,67 2,66 – 1596703270 – 2,59
minver 25746 41736 40152 0,96 1,56 61579 149386 2,39 3,58
pm 178339194 349576605 348784220 1,00 1,96 273680209 503009838 1,53 1,44
powerwindowb 8204 – – – – 14096 30889 1,72 –
prime 135944 485956 249622 0,51 1,84 682279 2939746 5,02 6,05
quicksort 56159097 138962109974 135157270647 0,97 2406,69 82844689 206979278894 1,48 1,49
recursion 25991 35506 35506 1,00 1,37 85317 233528 3,28 6,58
st 1726823 2682337 2663482 0,99 1,54 2893966 5864534 1,68 2,19

a trace buffer overflow
b consistency check failed

Table 2 Results for the TACLeBench benchmark suite. The programs have been measured twice,
once with L1 instruction cache enabled and once with L1 instruction cache disabled. The first
column gives the measured end-to-end execution time in cycles. The second and third columns give
the computed execution time estimates, once ignoring the execution context and once taking the
loop iteration context into account. The forth column shows the ratio between context-sensitive
and context-insensitive estimates (smaller is better). The fith column shows the overestimation
comparing the end-to-end observations and the analysed context-sensitive bounds. The final four
columns compare activated and deactivated L1 instruction cache.

overall bound. For benchmark powerwindow, we could not give any bound with activated L1
instruction cache because a consistency check in our prototype failed.

Deactivation of the L1 instruction cache leads to a slowdown factor of 3.29 on average.
Ignoring the outlier crc, which benefits extremly from the L1 instruction cache, the average
slowdown factor is 1.94.

Overall, our evaluation shows that the benchmarks benefit from the L1 instruction cache
(as visible in the end-to-end measurements), but it is sometimes hard to capture the typical
cache behaviour in a hybrid approach which aims for upper bounds.

7 Conclusion and Future Work

In this contribution, we have shown a method that is capable of estimating meaningful
WCET of embedded software under the realistic conditions of modern SoCs. Even using the
waypoints instead of basic blocks, a context sensitive aggregation of instruction execution
times can be achieved. These execution times can be combined to form a WCET for the
overall program (or larger portions of it). Using TACLeBench examples, we can show that
the results are highly realistic.

Still many open questions remain. We are currently working on a method to gather a

WCET’16



10 Continuous Non-Intrusive Hybrid WCET Estimation Using Waypoint Graphs

much more detailed statistics of the execution times between waypoints. This would allow a
better judgement of the gathered statistics. Also, we want to check, whether this approach
can be used for other trace streams like Nexus 5001™. Ultimately, the question still has be
answered whether slightly enhanced trace streams could give better results for the WCET
estimation.

References
1 AbsInt Angewandte Informatik GmbH. aiT Worst-Case Execution Time Analyzer. http:

//www.absint.com/ait/.
2 ARM Ltd. CoreSight™ Program Flow Trace™ PFTv1.0 and PFTv1.1 Architecture Spe-

cification, 2011. ARM IHI 0035B.
3 ARM Ltd. Embedded Trace Macrocell™ ETMv1.0 to ETMv3.5, 2011. ARM IHI 0014Q.
4 ARM Ltd. CoreSight™ Architecture Specification v2.0, 2013. ARM IHI 0029B.
5 ARM Ltd. Embedded Trace Macrocell™ Architecture Specification ETMv4.0 to ETMv4.2,

2016. ARM IHI 0064D.
6 A. Betts and G. Bernat. Tree-based wcet analysis on instrumentation point graphs. In 9th

IEEE International Symposium on Object and Component-Oriented Real-Time Distributed
Computing (ISORC 2006). IEEE Computer Society, April 2006.

7 A. Betts, N. Merriam, and G. Bernat. Hybrid measurement-based WCET analysis at the
source level using object-level traces. In B. Lisper, editor, 10th International Workshop
on Worst-Case Execution Time Analysis (WCET 2010), volume 15 of OpenAccess Series
in Informatics (OASIcs), pages 54–63. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2010.

8 B. Dreyer, C. Hochberger, S. Wegener, and A. Weiss. Precise Continuous Non-Intrusive
Measurement-Based Execution Time Estimation. In Francisco J. Cazorla, editor, 15th
International Workshop on Worst-Case Execution Time Analysis (WCET 2015), volume 47
of OpenAccess Series in Informatics (OASIcs), pages 45–54, Dagstuhl, Germany, 2015.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

9 H. Falk, S. Altmeyer, P. Hellinckx, B. Lisper, W. Puffitsch, C. Rochange, M. Schoeberl,
R. B. Sørensen, P. Wägemann, and S. Wegener. TACLeBench: A Benchmark Collection
to Support Worst-Case Execution Time Research. In Martin Schoeberl, editor, 16th Inter-
national Workshop on Worst-Case Execution Time Analysis (WCET 2016), volume ?? of
OpenAccess Series in Informatics (OASIcs), pages ??–??, Dagstuhl, Germany, 2016. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. Submitted for review.

10 Freescale Semiconductor, Inc. P4080 Advanced QorIQ Debug and Performance Monitoring
Reference Manual, Rev. F, 2012.

11 IEEE-ISTO. IEEE-ISTO 5001™-2012, The Nexus 5001™ Forum Standard for a Global
Embedded Processor Debug Interface, 2012.

12 K. Schmidt, D. Marx, J. Harnisch, and A. Mayer. Non-Intrusive Tracing at First Instruction.
SAE Technical Paper 2015-01-0176.

13 S. Stattelmann and F. Martin. On the Use of Context Information for Precise Measurement-
Based Execution Time Estimation. In B. Lisper, editor, 10th International Workshop
on Worst-Case Execution Time Analysis (WCET 2010), volume 15 of OpenAccess Series
in Informatics (OASIcs), pages 64–76. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2010.

14 R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat,
C. Ferdinand, R. Heckmann, F. Mueller, I. Puaut, P. Puschner, J. Staschulat, and P. Sten-
ström. The Determination of Worst-Case Execution Times—Overview of the Methods and
Survey of Tools. ACM Transactions on Embedded Computing Systems (TECS), 7(3), 2008.

http://www.absint.com/ait/
http://www.absint.com/ait/

	Introduction
	Related Work
	Workflow
	Embedded Trace Units
	Revised Method
	Evaluation
	Conclusion and Future Work

